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Abstract

Amyloid-β peptide (Aβ) and tau protein deposits in the human brain are the pathological 
hallmarks of Alzheimer’s disease (AD). Tau is a class of proteins that are abundant in nerve cells 
and perform the function of stabilizing microtubules. However, in certain pathological situations, 
Tau proteins become defective and fail to adequately stabilize microtubules, which can result in 
the generation of abnormal masses that are toxic to neurons. This process occurs in a number 
of neurological disorders collectively known as Tauopathies. Tau protein is the major factor of 
the intracellular fi lamentous deposits that relate to a number of neurodegenerative diseases 
which includes the progressive supranuclear palsy (PSP), Pick’s disease, and Parkinsonism. The 
identifi cation of mutations in Tau established that dysfunction or misregulation of tau protein 
is suffi cient to cause dementia and neurodegeneration. In this review article, we discussed 
the etiology of the tau formation and role in AD and subsequently therapeutic approach for 
disassembling and Tau inhibition. 
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Introduction

The need for a new approach to treatment of Alzheimer’s disease is urgent. 
Alzheimer’s is the most common age-related dementia and the number of cases in 
the United States is expected to increase from the current number of about ϐive to six 
million to 15 million by the year of 2050. The costs to family life and on the health 
care system are enormous. Alzheimer’s and other dementias are projected to cost 
the United States approximately $226 billion in 2015 alone (estimated 44.4 million, 
in 2013), with that number rising to as high as $1.1 trillion in 2050 (approx. 135.5 
million in 2050) [1,2]. Tau protein is the major factor of the ϐilamentous deposits that 
relate to AD alongside various other neurodegenerative disorders. Tau protein belongs 
to a group of proteins referred to as Microtubule-Associated Proteins (MAPs), that in 
common are heat resistant and limited affected by acid treatment without loss their 
function [3]. Six isoforms of tau protein differ according to the contents tubulin binding 
domains. These isoforms, which vary in size, are related to the presence or absence of 
sequences encoded by exons. Because each of these isoforms has explicit physiological 
roles, they are differentially expressed during the development of the brain. Tau has 
been said to interact with a number of other proteins besides tubulin/microtubules 
[4], although the biological relevance of many of these interactions is not clear. 

Structure of Tau

Tau is an unusual protein that has long stretches of charged (positively and 
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negatively) regions that are not beneϐicial for intermolecular hydrophobic association 
[5]. Of the four microtubule binding repeats in tau, the predicted amino acids having 
β-structure are concentrated. Tau is a hydrophilic protein that has been widely 
categorized in solution where, by analysis of the circular dichroism spectra [6], it 
appears as a random coiled protein. With its sedimentation coefϐicient, tau has been 
suggested to be a highly irregular protein, compatible with the long rod structure 
observed by electron microscopy [7]. Tau is encoded by a single gene, MAPT, which 
lies on human chromosome 17. In the human brain, tau is expressed as six molecular 
isoforms, which are the result of alternative splicing of exons 2, 3 and 10 in its pre-
mRNA. The six isoforms of tau differ from one another in containing zero (0N), one 
(1N), or two (2N) amino-terminal inserts of 29 amino acids each, and the presence of 
three (3R) or four (4R) microtubule-binding domain repeats in a assumable length of 
352 to 441 amino acids [8-11]. In the adults, it consists of a family of four to six related 
polypeptides with apparent mol. wts of 50,000 - 68,000 daltons [12].

Tau changes in the neuronal morphology

Neurons are cells with a very complex morphology; the microtubules become 
stabilized in speciϐic directions that develop two types of cytoplasmic extensions that 
will become the axon and the dendrites, and tau is preferentially localized and active 
in distal portions of axons where they stabilize microtubules as well as providing 
ϐlexibility. In Figure 1a,1b [9], the expression of tau in cells promotes the stabilization 
of microtubules, leading to the formation of cytoplasmic extensions as shown by 
the arrows. Neural transmission occurs through these processes, and any changes 
in neuronal morphology may affect the behavior and produce pathological events. 
In pathological situations, tau has additionally been shown to be capable of forming 
aberrant ϐibrillary polymers as shown in Figure 1c and Figure 2 (courtesy NRN poster 
2008).

 
Figure 1: (Courtesy [9] and modifi ed by us) The expression of tau in non-neural cells (a and b) promotes the 
stabilization of microtubules, leading to the formation of cytoplasmic extensions (arrows) that are not normally 
seen in those cells that are not expressing tau. c: Fibers assembled in vitro from the pro-aggregant Tau repeat 
domain.

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 2: (Courtesy NRN poster 2008 and modifi ed by us) The image on the left shows a view of the binding of tau 
to a tubulin dimer. The right shows a description of the differences between a healthy neuron versus a diseased 
neuron and the result of a of the tau hyperphosphorylation.
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Formation of how Tau proteins 

Tau proteins are produced through alternative splicing of a single gene called MAPT 
(Microtubule-Associated Protein Tau). The proteins work together with a spherical 
protein called tubulin to stabilize microtubules and aid the assembly of tubulin in 
the microtubules. Tau proteins achieve their control of microtubule stability through 
isoforms and phosphorylation. These six tau isoforms are generated by alternative 
mRNA splicing from a single gene in human brain [13,14]. Tau is a phosphoprotein that 
normally contains 2-3 phosphates/molecule, but it is abnormally hyperphosphorylated 
with a stoichiometry of 9-10 moles of phosphate per mole of protein in Alzheimer’s 
disease (AD) brain [15,16]. To date, more than 30 phosphorylation sites have been 
identiϐied in AD hyperphosphorylated tau, some of which are not phosphorylated 
in normal tau. Hyperphosphorylation (mechanisms used by the cell to regulate 
mitosis) of tau proteins can cause the straight ϐilaments to tangle which is referred 
to as neuroϐibrillary tangles. These tangles contribute to the pathology of Alzheimer’s 
disease. When a brain affected by Alzheimer’s disease is examined, all six isoforms 
of tau are often found hyperphosphorylated in paired helical ϐilaments. Deposits of 
abnormal aggregates enriched with tau isoforms have also been reported in some 
other neurodegenerative diseases. Certain aspects of Alzheimer’s pathology also point 
at some similarities being shared with prion diseases. 

Tau protein was discovered by studying factors necessary for microtubule 
formation. Tau protein promotes tubulin assembly into microtubules, one of the major 
components of the neuronal cytoskeleton that deϐines the normal morphology and 
provides structural support to the neurons [17,18]. Tubulin binding of tau is regulated 
by its phosphorylation state, which is regulated normally by coordinated action of 
kinases and phosphatases on tau molecule [19,20].

Taupathies

Tauopathies are considered as a group of disorders that are the consequence of 
abnormal tau phosphorylation, abnormal levels of tau, abnormal tau splicing, or 
mutations in the tau gene. In some tauopathies, like Alzheimer’s disease or Downs 
syndrome, the tau pathology is associated with other cerebral changes. The majority 
of neurodegenerative diseases are characterized by the deposition of insoluble protein 
in cells of the neuromuscular system. Advances in molecular neuropathology have 
allowed a classiϐication system of neurodegenerative diseases based on this protein 
accumulation. Microtubule-associated tau is one protein that has important functions in 
healthy neurons, but forms insoluble deposits in diseases as tauopathies. Tauopathies 
encompass more than 20 clinicopathological entities, including Alzheimer’s disease, 
the most common tauopathy. There are important clinical, pathological, biochemical 
and genetic similarities in the range of these diseases and they have helped to advance 
our understanding of the factors that initiate neurodegeneration and tau accumulation. 

Alzheimer disease is the most common and the best-studied tauopathy in which two 
main pathological structures form in the brains of patients: senile plaques (composed 
of the β-amyloid peptide), and neuroϐibrillary tangles (NFT), It generates problems in 
recent memory, a function associated to the temporal lobe, and in visual and spatial 
dysfunction and poor performance of over-learned tasks, functions of the parietal lobe. 
In connection with the global trend of prolonging human life and the increasing number 
of elderly in the population, the Alzheimer’s disease becomes one of the most serious 
health and socioeconomic problems of the present. Tau protein promotes assembly and 
stabilizes microtubules as mentioned before, which contributes to the proper function 
of neuron. Alterations in the amount or the structure of tau protein can affect its role as 
a stabilizer of microtubules as well as some of the processes in which it is implicated. 
Abnormal phosphorylation and truncation of tau protein have gained attention as 
key mechanisms that become tau protein in a pathological unit. Evidences about 
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the clinic pathological signiϐicance of phosphorylated and truncated tau have been 
documented during the progression of AD as well as their capacity to use cytotoxicity 
when expressed in cell and animal models. Alzheimer’s disease is the most common 
type of dementia characterized by memory impairment and alteration of diverse 
cognitive abilities. Alzheimer’s disease and related tauopathies are histopathologically 
classiϐied by slow and progressive neurodegeneration, which is associated mostly with 
intracellular buildup of tau protein leading to the neuroϐibrillary tangles (NFTs) and 
other inclusions containing modiϐied tau (Figure 3) [21,22]. In pathological conditions, 
such as the case in AD, not only does abnormal phosphorylation of tau protein decrease 
its tubulin binding capacity leading to microtubule disorganization, but also this 
protein self-polymerizes and aggregates in the form of NFTs [21,22]. 

In AD, the normal role of tau protein is ineffective to keep the cytoskeleton well 
organized in the axonal process because the protein loses its capacity to bind to 
microtubules. This abnormal behavior is endorsed by conformational changes and mis-
folding in the normal structure of the tau [23-25] that leads to its aberrant aggregation 
into ϐibrillary structures inside the neurons of demented individuals [26-28]. Thus, 
most of the altered pools of tau protein in the disease are redistributed and aggregated 
in both the compartment and isolated processes of affected neurons. Alterations in the 
amount or the structure of tau protein can affect stabilization of microtubules and other 
processes related to this protein [29,30]. Furthermore, phosphorylated tau protein has 
attraction to the kinesin and therefore is transported to the distal sites of neuropil. 
This may account for the observation that tangle pathology in Alzheimer’s disease 
appears to initiate distally and then spreads in a reversing manner to the perikaryon. 
This process may be a mechanism to protect the stability of the microtubules by 
transporting hyperphosphorylated tau more rapidly to other cellular locations where 
tau can form aggregates [31].

Other diseases that are associated with tauopathy are Corticobasal Degeneration, 
Picks Disease, Progressive Supranuclear Palsy and Down syndrome. Corticobasal 
degeneration is a disorder characterized by cognitive disturbances like aphasia 
and apraxia, moderate dementia, and motor disturbances such as inϐlexibility, limb 
dystonia, and tremor. Pathological analyses have indicated glial and neuronal tau 
inclusions. Tau is also present in hyperphosphorylated form, but only certain molecular 
weight forms can be detected by electrophoresis. Pick’s disease is a dementia that 
produces disturbances in language and behavior and is associated with frontal lobe 
atrophy. It provokes changes in the character of the patient and in their interactions 
with others, as well as depression. This disorder is characterized by the presence of 
cytoplasmic tau inclusions in neurons of the frontal lobe, known as Pick bodies. The 
granular cells of the dentate gyrus are also affected. There is an absence of exon 10 
expression [32], very vital component, suggesting that the degeneration of selective 
neuronal populations in different tauopathies reflects the physiological pattern of 
tau isoforms expressed. Progressive supranuclear palsy (PSP), also known as the 
Steele, Richardson, and Olszewski disorder, is characterized by supranuclear gaze 
palsy as well as by prominent postural instability, and in the later stages by dementia. 

 
Figure 3: Courtesy [21] and modifi ed by us) Histopathology of human brain [21,22]. A and B) Alzheimer´s disease, 
C) Pick’s dementia, C) corticobasal degeneration D) progressive supranuclear palsy.
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Tau inclusions have been found in neuronal and glial cells, with both astrocytes and 
oligodendrocytes (coiled bodies) being affected [33]. Down syndrome is due to the 
trisomy of chromosome 21 that results in the defective growth and maturation of the 
brain, producing a cognitive impairment and dementia. In this disorder, tau is also 
hyperphosphorylated yielding a pattern similar to that of the Alzheimer’s disease. 
Other tauopathies involving hyperphosphorylated tau include Parkinsonism with 
dementia, myotonic dystrophy, and prion diseases with tangles.

Treatment options for Tauopathies

As of now, there are no approved and established pharmacologic treatment options 
for tauopathies. Available treatment strategies are based mainly on small clinical trials, 
miscellaneous case reports, or small studies. Approved therapeutic agents for Alzheimer´s 
dementia, such as acetylcholinesterase inhibitors and Memantine, have been used off-
label to treat cognitive and behavioral symptoms in tauopathies, but the outcome has not 
been consistent. For behavioral or symptoms, treatment with antidepressants-especially 
selective serotonin reuptake inhibitors-could be helpful. In addition to pharmacologic 
treatment options, physical, or speech therapy can be applied to improve functional 
abilities. Each pharmacologic intervention should be ϐitted to the speciϐic symptoms of 
the individual patient, and decisions about the type and duration of treatment should 
be based on its efϐiciency for the individual and the patient’s tolerance. Currently, no 
effective treatment is available that targets the cause of these diseases. Overall, only 
symptomatic treatment is available for AD and tau protein misfolding diseases, and new 
therapeutic concepts range from tau vaccinations and antiphosphorylation strategies to 
microtubule-stabilizing and antiaggregation drugs.

Anti-infl ammatory or antioxidant drugs based impairments

Based on clinical observations, the individuals with treatment of Epidemiological 
studies were chronically maintained on anti-inϐlammatory or antioxidant drugs 
relevant other disease conditions had lower risks for developing cognitive impairment 
and AD [34]. The hypothesis was approved by various other studies which shows 
the decrease of NFTs [35,36], tau phosphorylation [37], neurobehavioral (memory) 
deϐicits [38], Aβ42 burden [39,40], synaptic degeneration [41-43], and mitochondrial 
dysfunction [44]. Various anti-oxidants and anti-inϐlammatory agents that have 
provided neuroprotection for AD are curcumin [40], alpha-lipoic acid [45-47], Vitamin 
E [48,49], resveratrol [50], phytonutrients [51], cyclooxygenase 2 inhibitors [52], 
Ginkgo [53], and melatonin [54]. 

Insulin therapy

Studies have found that the major role for a tau hyperphosphorylation which leads 
to deformation of tau proteins, can be attributed to (i) central disruption of insulin 
signaling by insulin receptor or (ii) insulin receptor substrate (IRS) 2 gene deletions, 
(iii) following intracerebral streptozotocine injections (Figure 4) [55]. Therefore, 
an insulin supplement could improve the cognition and brain energy metabolism in 
people with mild cognitive impairment or early AD. Further, studies have found that 
insulin administration enhances clearance of Aβ-42, decreases activity of kinases that 
promote tau hyperphosphorylation, and enhances signaling through pathways needed 
for synaptic plasticity [55-58]. 

Therapeutics

a) Tau anti-phosphorylation

In another mechanism, the inhibition of hyperphosphorylation could produce 
an avoidable condition for the formation of the neuroϐibrillary tangles. Studies have 
shown that the glycogen synthase kinase-3 (GSK-3) protein has a prominent function 
in the stimulation of the hyperphosphorylation of tau proteins. W. Noble and K. Duff 
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presented [59] an in vivo study with transgenic mice overexpressing mutant human 
tau. The mice were treated with the glycogen synthase kinase-3 (GSK-3) inhibitor 
lithium chloride. Treatment resulted in signiϐicant inhibition of GSK-3 activity. Lithium 
administration also resulted in signiϐicantly lower levels of phosphorylation at 
several epitopes of tau known to be hyper phosphorylated in Alzheimer’s disease and 
signiϐicantly reduced levels of aggregated, insoluble tau. The study also found that the 
lithium-chloride-treated mice showed less degeneration if administration was started 
during early stages of tangle development. These results support the idea that kinases 
are involved in tauopathy progression and that kinase inhibitors may be effective 
therapeutically [59]. Potential therapies primarily involve deformed tau proteins. 
These therapeutic targets include inhibition of tau hyperphosphorylation, microtubule 
stabilization, prevention of tau oligomerization, and enhancement of tau degradation 
as well as tau immunotherapy. With no cure till date, however the important part is 
the few drugs are in preclinical trials. One of such promising drug is LMTX (Scheme 1), 
which is currently in the third phase of clinical trials [60]. The methylthionium chloride 
derived LMTX, generally acts as an inhibitor of tau hyperphosphorylation. 

Studies reveal a signiϐicant relevance of amyloid β induced formation of 
neuroϐibrillary tangles (NFTs) from tau proteins in the brain cells. Ideally, this can be 

 
Figure 4: [55-58] (Courtesy [55] and modifi ed by us) Relevance of tau and Insulin pathway.

 
Scheme 1: Chemical structure of LTMX drug.
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understood from the phosphorylation mechanism of tau proteins. The protein kinases 
are mainly responsible for the phosphorylation of the tau proteins. Particularly, the 
glycogen synthase kinase 3β (GSK-3β) is one of the key enzymes which phosphorylates 
the tau proteins. A further study shows that, neurotoxic Aβ promotes GSK-3β activity. 
Evident from this, the GSK-3β inhibitors (for example Tideglusib) (Scheme 2) are 
potential drug targets [61,62].

b) Tau Dephosphorylation

The counteraction mechanism against the tau anti phosphorylations would 
be dephosphorylation process, which can be regenerating the tau proteins from 
the toxic, and aggregated Paired helical ϐilaments (PHFs). In a process to cure the 
hyperphosphorylated proteins, Gong et al studied the Kinetics of Tau Dephosphorylation 
Catalyzed by PP5. PP5 is a phosphoseryl/phosphothreonyl protein phosphatase with 
an effective character of tau dephosphorylation studied previously by the same groups 
[63]. Interestingly, PP5 dephosphorylates tau at least at 12 phosphorylation sites with 
different efϐiciencies. Further, PP5 can dephosphorylate tau in living cells with AD brain. 
Overall the studies are in progress to provide dephosphorylation could be a possible 
strategy in curing AD affected brains [64]. On basis of few reports, both agonists and 
antagonists of 5HT6 have crucial impact over improving memory and learning in 
humans as well as animals. It is also evident that the cholinergic activity gradually 
deteriorates, due to degeneration of cholinergic neurons. Therefore, compounds 
affecting 5-HT6 receptors represent potential therapeutic targets for symptomatic 
treatment of AD. In this concern, the Idalopirdine (Lu AE58054) acts as a selective 
5HT6 receptor antagonist and has shown tremendous clinical phase II trials with little 
side effects. Further the drug is in phase III trials [65-68]. In a similar mechanism of 
function the drug SB742457 (Scheme 3) could produce effective results compared to 
the idalopirdine [69].

Similar to the serotonin receptors, the presynaptic histamine H3 receptors also are 
evenly found in the prefrontal cortex, hippocampus, and hypothalamus. Therefore 
are equally responsible for the memory and recognition aspects for the human brain. 
The use of H3 antagonists are expected to enhance the cholinergic neurotransmission 

 
Scheme 2: Tau anti-phosphorylation drug Tideglusib.

 
Scheme 3: Chemical structure of 5HT6 receptor antagonists
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as a result of release of acetylcholine, dopamine and GABA into the synaptic cleft. 
Hence working on this hypothesis two drugs were introduced, such as ABT-288 and 
GSK239512 (Scheme 4). The phase I and phase II clinical trials of the former one 
have shown tremendous anti-AD activity while the later drug has not shown any 
considerable progress in low-moderate AD patients [70-73]. 

Azeliragon (TTP488) is an oral small-molecule inhibitor of the receptor for 
advanced glycation endproduct (RAGE), which mediates transport of the Aβ peptide 
from peripheral to CNS compartments in the brain [74]. This drug is currently 
undergoing phase III trials in patients with mild-to-moderate AD (NCT02080364). 
Encenicline has been introduced into phase III trials with a positive results in phase 
II. The drug is a selective α7-nAChR (a-7 nicotinic acetylcholine receptor) agonist. 
Similarly Nilvadipine is a dihydropyridine calcium antagonist currently approved for 
treatment of hypertension (Nivadil) (Scheme 5). Clinical observations have revealed 
its positive inϐluence on cognition in treated patients [75,76].

c) Metal Chelators: A Possible Chemotherapy for Alzheimer’s Disease

Distribution of copper, iron and zinc as the key components connected to 
amyloid metabolism. Therefore the dysfunctions of these metal ions are responsible 
for the deposits of amyloids and other misfolded proteins resulting in the various 
neurodegenerative diseases. The restoration of these metal ions homeostasis in 
any form can possibly be an essential chemotherapeutic. External addition of few 
chelators has found improved activity for the metal ions. These stimulates by a weak 
coordination to the metal ion and further bind to the protein or oligomer deposits. In 
such a case, the potential of PcTS (Scheme 6) as an amyloid modulator was explored 
on the protein tau and the beta-amyloid (Aβ) peptide, considered as the pathological 
components of Alzheimer’s disease. PcTS was able to interfere with tau ϐilament 
assembly in vitro by inducing the conversion of the nontoxic protein state into soluble 
oligomers characterized by the lack of α-helix or β-sheet structural elements in its 
molecular architecture [77]. 

 
Scheme 4: Chemical structure of histamine H3 receptor antagonists.

 
Scheme 5: Structure of anti-Alzheimer’s drugs in phase III clinical trials representing different mechanisms of 
action.
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d) Tau Vaccination

The amyloid cascade hypothesis postulates that Aβ deposition is an initial event in 
the pathogenesis and Aβ deposition may precede AD symptoms in some patients by at 
least 20 years. Amyloid-β therapy with active and passive immunizations against Aβ 
has a high possibility to be effective in removing Aβ from brain and might prevent the 
downstream pathology. Since 2000, a number of clinical trials for AD immunotherapy 
have started, have failed, and are continuing to be pursued. Asuni and coworkers 
studied a vaccination of P301L transgenic mice, with developed neuroϐibrillary tangles 
in several brain regions and the spinal cord, with a tau fragment peptide. Vaccination 
reduced aggregated tau in the brain and slowed progression of the tangle-related 
behavioral phenotype compared with control animals [78].

e) Microtubule Stabilizing by Therapeutics

Normal tau has a key role in stabilizing the microtubules and maintaining MT 
networks essential for axonal transport in neurons. The failure of these actions by the 
hyper phosphorylated tau results in the instability of microtubules and are characterized 
as tau inclusions. Trojanowski JQ et al., have studied a microtubule-binding by external 
drugs which could facilitate the tau sequestration by stabilizing microtubules and 
reversing fast axonal transport deϐicits in a tauopathy model. The ϐinding employed 
paclitaxel or Taxol (well-known anti-cancer drug) injected into transgenic mice for a 
period of 12 weeks. The study showed that the results were interesting as both the 
stable microtubules were increased and also restored fast axonal transport in spinal 
axons [79]. In another case, the stabilization of microtubules by tubulin binding had 
been approached with a small molecule drug epothilone D (BMS-241027) and TPI-287 
(Scheme 7) [80].

f) Cell Therapy

In the last few years, hopes were raised that cell replacement therapy would provide 
cure by compensating the lost neuronal systems. Stem cells obtained from embryonic 
and adult tissue and grafted into the intact brain of mice or rats were mostly followed 
by their incorporation into the host parenchyma and differentiation into functional 
neural lineages. In the lesioned brain, stem cells exhibited targeted migration 
towards the damaged regions of the brain, where they engrafted, multiplied and 
matured into functional neurons. Observations in animal models of AD have provided 
evidence that transplanted stem cells or neural precursor cells (NPCs) survive, 
migrate, and differentiate into cholinergic neurons, astrocytes, and oligodendrocytes 
with amelioration of the learning/memory deϐicits. Besides replacement of lost or 
damaged cells, stem cells stimulate endogenous neural precursors, enhance structural 
neuroplasticity, and down regulate pro-inϐlammatory cytokines and neuronal apoptotic 

 
Scheme 6: Chemical structure of PcTS as an amyloid modulator.
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death. Stem cells could also be genetically modiϐied to express growth factors into the 
brain. In the last years, evidence indicated that the adult brain of mammals preserves 
the capacity to generate new neurons from neural stem cells. Interestingly, many 
drugs including antidepressants, lithium, acetyl cholinesterase and inhibitors were 
able to enhance the impaired neurogenesis in this disease process. This paved the way 
towards exploring the possible pharmacological manipulation of neurogenesis which 
would offer an alternative approach for the treatment of AD [81-87].

g) Essential Fatty Acids and Tau in Neurodegenerative Diseases

Polyunsaturated fatty acids (PUFA) are required for maintaining the structure, 
function and vascular integrity of the brain. The brain can synthesize non-essential 
fatty acids, but essential PUFA (e.g., arachidonic acid [AA] and docosahexaenoic acid 
[DHA]) are largely acquired from the peripheral circulation [88]. Arachidonic acid 
metabolism produces pro-inϐlammatory lipid metabolites, such as prostaglandins and 
leukotrienes, whereas metabolism of DHA generates anti-inϐlammatory mediators, 
such as resolvins. Hence, an increase in AA to DHA ratios could promote inϐlammation, 
further contributing to AD pathogenesis [89]. Docosahexaenoic acid (DHA, 3 22:6, n-3) 
is an n-3 long-chain PUFA that has recently attracted attention because of its various 
beneϐicial effects on human health. DHA is essential for brain development, and DHA 
or its precursors, such as α-linolenic acid (18:3, n-3) must be obtained from the diet 
or from the maternal supply during pregnancy because α-linolenic acid cannot be 
synthesized de novo by animal tissues. DHA accumulation in neural tissue is increased 
greatly during the perinatal period, when the frontal lobe and hippocampus undergo 
intensive growth and neurogenesis, neuritogenesis, and synaptogenesis occur actively. 
Therefore, an adequate supply of DHA is required for proper brain development [90].

h) The role of Retinoic Acid (RA) in Tau modulation

Retinoic acid, an essential factor derived from vitamin A, has been shown to have 
a variety of functions including roles as an antioxidant and in cellular differentiation. 
Since oxidative stress and de-differentiation of neurons appear to be common 
pathological elements of a number of neurodegenerative disorders, RA may offer 
therapeutic promise. RA may have therapeutic properties ideally served for the 
treatment of AD. Dosage and safety monitoring will be a major challenge to focus on 
primarily. An expectation is there of line of clinical trials to arise in the near future, 
which will be designed to better understand the effectiveness of the mechanisms with 
RA. Very recently Das and his group published review articles elucidating the role of 
natural and synthetic retinoids in AD [91,92].

Etiology

The etiological factors, other than older age and genetic susceptibility, remain to be 
determined. Increasing evidence strongly points to the potential risk roles of vascular 

 
Scheme 7: Chemical structure of Paclitaxel or Taxol. 
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risk factors and disorders for example smoking, midlife high blood pressure and obesity, 
diabetes, and cerebrovascular lesions and the possible beneϐicial roles of psychosocial 
factors such as higher education, social engagement, physical exercise, and mentally 
stimulating activities, in the pathogenetic process and clinical manifestation of the 
dementing disorders. The interventions of vascular risk factors and the maintenance 
of socially integrated lifestyles and mentally stimulating activities are expected to 
reduce the risk of the clinical onset of dementia, including AD.

Summary
Tau is a microtubule-associated protein that stabilizes neuronal microtubules 

under normal physiological conditions due to functional redundancy and the presence 
of other microtubule-associated proteins. However, in pathological situations tau 
may be hyperphosphorylated and assembled in an aberrant way. As a consequence 
of these modiϐications, neural toxicity supplements, resulting in the appearance of 
neurological disorders, mainly dementias for example the Alzheimer’s disease, which 
are collectively known as tauopathies. Different types of neurons are damaged in 
different tauopathies, and the outline of the mechanisms underlying the basis for this 
speciϐicity will probably be the objective neurodegeneration.

It is largely accepted that clinical appearance of dementia in Alzheimer’s disease is 
due to the neuronal loss occurring in those areas of the brain associated with cognitive 
functions of the patients. Fibrillary presences are reported to be responsible for cell 
death. However, inconsistency has emerged from studies demonstrating that cognitive 
impairment in animal models occurs earlier than the initial formation of ϐibrillary 
structures. In this concern, numerous of reports analyzing the brain of Alzheimer 
diseased patients come to an agreement that ϐibrillary aggregation of tau is the best 
correlator with the onset and progression of dementia. It is mostly accepted that 
abnormal posttranslational modiϐications, that is, hyperphosphorylation, acetylation, 
glycation, nitration, truncation, and others, are responsible for altered tau structure 
in Alzheimer’s disease. Moreover, accurate determination of altered tau protein in the 
cerebrospinal ϐluid and other body ϐluids may provide better expectation to predict the 
onset and evolution of dementia. 
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