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Introduction
The main goal of the article is: to classify non-variant 

points in the different types of phase diagrams, regardless of 
component and equilibrium phase numbers; to consider the 
mono-variant equilibrium in the nearest neighborhood of 
non-variant points; and to deduce the rules for the calculation 
of different type phase diagrams elements (points, lines, 
surfaces – ϐields, volumes etc) from the data of components 
and phase numbers.

It is well-known, that non-variant points in the diagrams 
of phase equilibrium are characterized by the fact, that 
thermodynamic variance in these points or the number of 
thermodynamic freedom degrees (f) is equal to zero. f value 
is the number of independent state parameters of the system, 
which one can change without a change in the number 
or nature of equilibrium phases. Calculation of f values is 
produced with the help of Gibbs rule [1,2]:

f = n – k +2 – l  (1),

where: n is a component number (or the number of 
substances, masses of which can change independently), 
k is the equilibrium phases number, and l is the number of 
independent limiting conditions, for example, T = const (l=1), 

or P = const (l=1), or T,P = const (l=2), or ( ) ( )j iX consttri   - 
concentration i-th trim in j-th phase with variable composition 

(l=1), or ( ) ( ) ( , )/ sec
j j i jX X consti k   concentration plane i-k-th 

section in j-th phase with variable composition (l=1), etc [1,2]. 
Additionally one believes, that external variable force ϐields 
are not superimposed on the heterogeneous system and also, 
that the system does not have many curved surfaces (with 
curvatures nano-radiuses units or tens nanometers [2]).

The classiϐication of non-variant points in the different 
type phase diagrams earlier was considered sometimes. 
For example, in fusibility diagrams such classiϐication 
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(eutectics, r-kind peritectics, points of polymorph transitions) 
was fulϐilled earlier [3,4]. For such purposes, the authors 
elaborated the most common and comfortable vector-matrix 
apparatus, which was applied in the full concentration range 
[3]. Later, in solubility diagrams classiϐication of non-variant 
points (eutonics, r-kind peritonics, points of crystal-solvate 
transitions) was done [5]. Here authors adapted the vector-
matrix apparatus from to the reduced (without solvent) 
concentration range. Classiϐication of non-variant points 
in the liquid-vapor phase diagrams at T = const or P = const 
(congruent hetero-azeotropes, incongruent hetero-azeotropes 
in equilibrium diagrams: liquid1-liquid2-…-vapor) was also 
done sometimes as seen in a few works [2,4]. In delamination 
phase equilibrium diagrams liquid1-liquid2-…liquidk or solid1- 
solid 2-… solidk at T, P = const (in vapor phases delamination is 
not prohibited, but sufϐiciently untypical) such classiϐication 
was not done may be because of the relative rarity of the 
consideration. Meanwhile, all types of phase diagrams in 
different variables of state and different concentration spaces 
are absolutely equivalent in a topological sense [5–7]. Some 
types of non-variant equilibrium processes demand closed 
systems without system mass change, and some – open 
systems – with system mass change [1,2]. The different types 
of non-variant equilibrium phase processes are represented 
in Table 1.

Driving forces in non-variant process may be diff erent

- External heat supply or removal at P=const, which is 
consumed in a non-variant phase process with phases 
masses change;

- External pressure supply or removal at T=const, which 
also consumed in heterogeneous system volume 
change in non-variant phase process;

- External component supply or removal at T, P=const, 
which is also consumed in the non-variant phase 
process (in these cases phase process becomes open).

The stability of mono-variant equilibrium in the nearest 
neighborhood of non-variant points was considered in the 
same articles [3,5]. However, common consideration, taking 
into account the topological isomorphism of phase diagrams, 
was not conducted. In this part of the article, we shall also 
use the criteria of the stability of heterogeneous phases 
complex relatively inϐinitely small state changes (or criterion 
of diffusional stability). Probably the ϐirst authors got these 
conditions, authors demonstrated the principle difference 
between them and similar conditions for the individual phase 
on the example of hetero-azeotropes in ternary three-phase 
system [2,8]. In a study, these criteria were generalized on 
the systems with arbitrary component numbers [9], arbitrary 

Table 1: Characteristics of diff erent types of non-variant phase processes (formal signs of stoichiometric coeffi  cients of the resulting).

Number;
“Producing 

phase” (p-ph1)

Phase process 
“Producing phase” 



 ” ± resulting phases”
1 2 3 ... rp ph ph ph ph     

Diagram of phase 
equilibrium

Limiting 
conditions

Concentration
space

Components 
number (n);

Phases number (r)

Opened or 
closed system

(N system)

I. 
liquid (l) mnki ssssl  ... fusibility P=const full

2
1nr




n
closed 

II.
vapor (v)

mnki

mnki

ssssv
llllv



...
... liquid-vapor

solid-vapor
P=const -“- -“- -“- 

III.
(v)

mnki

mnki

ssssv
llllv



...
... liquid-vapor

solid-vapor
T=const -“- -“- -“- 

IV.
(l) mnki ssssl  ... solubility P=const;

T=const
reduced, without 

solvent (w) 3
nr




n
opened 

V.
(l) mnk llll  ... delamination P=const full

2
1nr




n -“-
closed

VI.
solid (s) mnk ssss  ... -“- -“- -“- -“- -“- 

VII.
(l) mnk llll  ... -“- P=const;

T=const
reduced, without 
one component 3

nr



n
opened 

VIII.
(s) mnk ssss  ... -“- -“- -“- -“- -“- 

IX.
(v) slv  single component Absence Absence r = 3

n =1 indiff erently 

X.
(v) ki ssv  -“- -“- -“- -“- -“- 

XI.
(l) ki ssl  -“- -“- -“- -“- -“- 

XII.
(s) i ks s s  -“- -“- -“- -“- -“- 
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phases in heterogeneous complex, as in the metric of full Gibbs 
potential in the whole concentration space, as in the metric 
incomplete Gibbs potentials (Korjinskiy potential) in reduced 
concentration space [10].

The goal to predict recurrently the number of phase 
diagram elements (points, lines, surfaces – ϐields, volumes, 
etc) from the data of components and phase numbers, as 
authors know, earlier was not set. Although, for example, the 
well-known “azeotrope rule”, for phase equilibrium diagrams 
liquid-vapor allows the calculation of the number of special 
diagram points – knots, saddles, focuses (in the role of which 
are points of individual components, binary azeotrope, ternary 
azeotropes, etc [11]).

1. Classifi cation of non-variant points and non-variant 
phase processes in the diff erent types of phase 
diagrams, according to their topological features of the 
location in concentration spaces

Full concentration space

Let us consider full concentration space and r-phase 
equilibrium in the arbitrary n-component system with 
thermodynamic variance f=0 (the non-variant process is 
closed). Renumber phases: 1 phase p-ph1 is the “producing 
phase”; 2, 3…r – ph2, ph3, …. Phr are “resulting phases”. The 
main requirement, applicable to p-ph1, is, that it is the phase 
with variable composition. This phase, as a rule, should 
differ according to the aggregation state from ph2, ph3, …. Phr 
(this requirement is not valid only for delamination phase 
equilibrium diagrams types V, VI, VII, and VIII in Table 1). So, 
we consider I, II, III, V, and VI non-variant phase processes at 
T=const or P=const. Without loss of generality will assume that 
the mass of the p-ph1 phase is equal to 1 mole:

1 2 2 3 3 ... r rp ph ph ph ph       (1.1).

Let us rewrite phase process (1.1) through the molar 

fraction of i-th components in the j-th phase - ( )j
iX :

)1()()3(
3

)2(
2

)1(
2

)(
2

)3(
23

)2(
22

)1(
1

)(
1

)3(
13

)2(
12

...
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...

...

n
r

nrnn

r
r

r
r

XXXX

XXXX
XXXX











   

(1.2).

If one sums all equations of the (1.2) system, he will get the 
balance mass equation:





r

i
i

2
1   (1.3).

Solve system (1.2):

( 1) ( 1)1
; 1( 1) ( 1)2

r rri i
rr ri i

 
  

    

 
 (1.4),

Where:
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 

   
                                                  (1.5),

So, the non-variant phase process in the full concentration 
range may be rewritten:

( 2) ( 2)* *1 2

rr rp ph phi ii
    


  (1.6).

Reduced concentration space

Let us consider reduced concentration space (without 
taking into account one component, for example, solvent, 
so one can add or remove this component to or from the 
system) and r-phase equilibrium in the arbitrary (n+1)-
component system with thermodynamic variance f=0 (non-
variant process is open). Also renumber phases: 1 phase p-ph1 
is “producing phase”; 2, 3…r – ph2, ph3 ….. phr are “resulting 
phases”. The requirement that –p-ph1 is the phase with 
variable composition is valid. This phase, as a rule, should 
differ according to the aggregation state from ph2, ph3 ….. phr 
(this requirement is not valid only for delamination phase 
equilibrium diagrams types V, VI, VII, and VIII in Table 1). 
We consider IV, VII, VIII, and non-variant phase processes at 
T,P=const in Table 1. Without loss of generality will assume 
that the mass of the p-ph1 phase is equal to 1 mole (without 
taking into account one of the components with number 1):

1 2 2 3 3 ... r rp ph ph ph ph         (1.7).

Let us rewrite phase process (1.7) through the molar 
fraction of i-th components in the j-th phase in reduced 
concentration space without 1-component (such molar 
fractions, as a rule, are named indexes Yaenecke - ( )jYi ):

1 1( ) ( ) ( ) ( ); 1
22

n nj j j jY n n Yi i ik ik

 
  


 (1.8),

Where: )( j
in  - mole number of i-th components in j-th 

phase.

(2) (3) ( ) (1)...2 1 3 1 1 1
(2) (3) ( ) (1)...2 2 3 2 2 2

.......................................................

(2) (3) ( ) (1)...2 1 3 1 1 1

rY Y Y Yr
rY Y Y Yr

rY Y Y Yrn n n n

  

  

  

  

  

     

  

  

  

 

(1.9).

Sum all equations of the (1.2) system, and get the balance 
mass equation:

1
2

r
ii

 

   (1.10).

Solve system (1.9):



Non-variant phenomena in heterogeneous systems. New type of solubility diagrams points

 www.advancechemjournal.com 077https://doi.org/10.29328/journal.aac.1001047

( 1) ( 1)1
; 1( 1) ( 1)2

r rri i
rr ri i

 
  

    

 
 

 

 (1.11),

Where:

(2) (3) ( ) (2) (3) ( 1) (1) ( 1) ( )... ... ...1 1 1 1 1 1 1 1 1
(2) (3) ( ) (2) (3) ( 1) (1) ( 1) ( )( 1)... ... ...( 1) 2 2 2 2 2 2 2 2 2;

........................ ..................
(2) (3) ( )...1 1 1

r i i rY Y Y Y Y Y Y Y Y
r i i rrY Y Y Y Y Y Y Y Yr

i

rY Y Yn n n

 

 
   

  

 
.................................

(2) (3) ( 1) (1) ( 1) ( )... ...1 1 1 1 1 1
i i rY Y Y Y Y Yn n n n n n
 

     

   
                (1.12).

So, the non-variant phase process in a reduced concen-
tration range may be rewritten:

1( 2) ( 2)* *1 2

rr rp ph phi ii

    


    (1.13).

Let us classify non-variant points.

1.1 Linear independent phases compositions: Let us 
consider the case when equilibrium phase compositions in 
the full concentration space or reduced concentration space 
are linearly independent. The number of components in 
this case n≥1 [n≥2] in full [reduced] concentration space for 
different types of diagrams from Table 1 I, II, III, V, VI (IV, VII, 

VIII). So, determinants ( 1) ( 1)0 or 0.r r 
     Determinants: 

( 1) ( 1) ( 1) ( 1);  ;r r r r
i i
   

      with the dimension (r-1) 

and (r-2) matching columns have one (different) sign, if 
ϐigurative points of p-ph1 – phase and phi – phase lie cis (trans) 
of hyper-plane, passing through the ϐigurative points of all 
other resulting phases: ph2, ph3,…, phi-1, phi+1… phr, according to 
the study by Modenov [12]. Sometimes in multidimensional 
geometry one says, that points p-ph1 – phase and phi– phase lie 
in the position of conjunction (opposition) to each other. So, 
we can formulate the common rule:

Rule I: Stoichiometric coefϐicients [ ]i i  in the equations 
of non-variant phase process (1.1) ((1.7)) are positive, if in full 
[reduced] concentration space ϐigurative points of producing 
phase and i-th resulting phase lie cis hyper-plane, passing 
through the ϐigurative points of the rest resulting phases and 
are negative, if ϐigurative points of producing phase and i-th 
resulting phase lie trans this hyper-plane.

According to the signs of [ ]i i  , there is possibly the 
realization of the following types of non-variant points:

A. All [ ] 0i i   . In this case one says, that p-ph1 forms 
congruently, and the non-variant point is named 
eutectic (Type I in Table 1.), eutonic (Type IV), 
congruent azeotrope (Type II, III), congruent liquid 
delamination (Type V, VII) or solid delamination (Type 
VI, VIII) points.

B. For some [ ] 0j j    (j = 2, 3…r), for the rest ones: 

( ) 0i i   . p-ph1 forms incongruently, and non-variant 
point is named k-type peritectic (Type I in Table 

1.), k-type peritonic (Type IV), k-type incongruent 
azeotrope (Type II, III), k-type incongruent liquid 
delamination (Type V, VII) or solid delamination 
(Type VI, VIII) points. k-number is a multiplicity of 
incongruent processes or a number of [ ] 0j j   . 
The maximal multiplicity of the incongruent process is 
(r-2), the rest is geometrically impossible.

C. One more type of non-variant point corresponds to the 
linear dependence of equilibrium phase compositions 
and will be considered later.

Let us consider all types of non-variant points in the 
systems with component numbers: 

- n=2 (types I, II, III, V, VI), n=3 (IV, VII, VIII);

- n=3 (types I, II, III, V, VI), n=4 (IV, VII, VIII);

- n=4 (types I, II, III, V, VI), n=5 (IV, VII, VIII).

Different types of the locations of non-variant points and 
p-ph1, phi equilibrium phase ϐigurative points in the systems 
with the different component numbers are represented in 
Figure 1.

- In a single-component system (n=1) in full concentration 
space without limiting conditions (l=0) the variant 
of linear independence of the 3 equilibrium phases 
composition is impossible because the composition of 
all coexisting phases in the whole concentration range 
is the same. In the binary system (n=2) in reduced 
concentration space (without 1-component), phase 
compositions are also the same in Jaenecke indexes 
[2,5]. So, for example, the solubility diagram in the 
binary system at T,P=const is a non-variant point. In 
both cases, concentration spaces are non-dimensional 
(geometric points). So, Figure 1. A can not generate 
speciϐic non-variant points, considered earlier. Phase 
diagram types IX, X, XI, and XII in this case can not be 
realized.

- In the systems, n=2 (types I, II, III, V, and VI) at T or 
P= const, n=3 (IV, VII, and VIII) at T,P= const – Figure 
1B,1C concentration space is mono-dimensional (cut 
in strict line). It is possible to realize only two types of 
non-variant points – E and PI;

- In the systems n=3 (types I, II, III, V, VI) at T or 
P= const, n=4 (IV, VII, VIII) at T,P= const – (Figure 1D- 
1F) concentration space is bi-dimensional (triangle 
plane). It is possible to realize three types of non-
variant points – E, PI, PII;

- In the systems n=4 (types I, II, III, V, VI) at T or P= 
const, n=5 (IV, VII, VIII) at T,P= const – (Figure 1G-1J) 
concentration space is three-dimensional (tetrahedron 
volume). It is possible to realize four types of non-
variant points – E, PI, PII, PIII;

- In the multi-component systems n=N (types I, II, III, V, 
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Figure 1: Diff erent types of the location of non-variant points and p-ph1, phi equilibrium phase fi gurative points in the systems with the diff erent 
components numbers: gray circles – phases points, black circles – auxiliary projections; dot lines – extensions and invisible faces. Symbols: E 
(eutectics, eutonics, congruent azeotropes, congruent liquid or solid delamination points); PK (K-th type peritectics, peritonics, incongruent azeotropes, 
incongruent liquid or solid delamination points). Component numbers n: 1.A (n=1[2]), 1.B-1.C (n=2[3]), 1.D-1F (n=3[4]), 1.G-1.J (n=4[5]).
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VI) at T or P= const, n=N+1 (IV, VII, VIII) at T,P= const 
concentration space is multidimensional (simplex 
hyper-volume). It is possible to realize N types of non-
variant points – E, PI, PII…PN-1.

It is also important to note, that usual phase diagrams 
(without reversible chemical reactions between system 
substances) and phase diagrams of mutual systems (with 
one or more reversible chemical reactions between system 
substances) from the point of view of non-variant points 
classiϐication are equivalent. The only difference is in the fact, 
that concentration simplex in mutual systems is the other, but 
has the same dimension. For example, in the systems with 
n=3(4) it is not a triangle, but a square, in the systems with 
n=4(5) it is not a tetrahedron, but a cube, etc.

1.2 Linear dependent phases compositions

One can see, that maximal common linear dependence of 
phase composition is virtually impossible. Really, belonging 
to 3 ϐigurative phase points to 1 strict line in a bi-variant 
concentration space, or belonging to 4 ϐigurative phase points 
to 1 plane in a three-variant concentration space, belonging 
to 4 ϐigurative phase points to 1 volume in a four-variant 
concentration space, all these cases are incredible. This fact 
reϐlects the absence of any additional causes of lowering 
the dimensions of concentration space in the conditions of 
r-phase equilibrium.

The only real case of the realization of such linear 
dependence is in the coincidence of ϐigurative points of 2 and 
3 different equilibrium phases in full or reduced concentration 
space. According to the reasons, mentioned above, the case of 
two different pairs of equilibrium phases coincidence in full or 
reduced concentration space is incredible.

Different types of the location of non-variant points and 
p-ph1, phi equilibrium phase ϐigurative points in the systems 
with the different component numbers (case of coincidence of 
the composition of two phases in full or reduced concentration 
space) are represented in Figure 2.

- In a single-component system (n=1) in full 
concentration space without limiting conditions (l=0) 
the composition of all coexisting phases in the whole 
concentration range is the same. This case corresponds 
to ternary points in single-component diagrams, the 
last ones may be formed by vapor-liquid-solid (Type 
IX in Table 1), vapor-solid-solid (Type X in Table 1), 
liquid-solid-solid (Type XI in Table 1), solid-solid-solid 
(Type XII in Table 1). Several different solid phases 
with the same composition correspond to different 
polymorph modiϐications. One additional moment 
is in the fact, that as a rule, for the realization of such 
equilibrium, one should use relatively high pressures. 
Non-variant points we shall denote T in Figure 2A. In 
these points, when heat is supplied, it is consumed to 

phase transitions: evaporation and melting (Type IX); 
evaporation and polymorph transformation (Type 
X); melting and polymorph transformation (Type XI); 
polymorph transformation (Type XII). If the driving 
force of the non-variant process is external pressure 
the same processes occur: the efforts of pressure 
increase will start non-variant processes, decreasing 
the sum phase volume. In the cases of reverse driving 
forces reverse phase processes will start.

Topologically similar in the diagrams of solubility in 
reduced concentration space (without solvent), phase 
compositions of two different crystal-solvates of one 
compound are also the same in Jaenecke indexes (Type IV). 
In the process of the solvent removing crystal-solvate with a 
larger number of solvent molecules will transfer to crystal-
solvate with a smaller number of solvent molecules.

- In the systems, n=2 (types I, II, III, V, VI) at T or P= 
const, n=3 (IV, VII, VIII) at T,P= const – Figure 2B, 
concentration space is mono-dimensional (cut in strict 
line). It is possible to realize only one type of non-
variant transition point – TI;

- In the systems n=3 (types I, II, III, V, VI) at T or P= const, 
n=4 (IV, VII, VIII) at T,P= const – Figure 1C concentration 
space is bi-dimensional (triangle plane). It is possible to 
realize only one type of non-variant transition point – TII;

- In the systems n=4 (types I, II, III, V, VI) at T or P= const, 
n=5 (IV, VII, VIII) at T,P= const – Figure 1D concentration 
space is three-dimensional (tetrahedron volume). It 
is possible to only one type of non-variant transition 
point – TIII;

- In the multi-component systems n=N (types I, II, III, V, 
VI) at T or P= const, n=N+1 (IV, VII, VIII) at T,P= const 
concentration space is multidimensional (simplex 
hyper-volume). It is also possible to realize one type of 
non-variant transition point TN-1.

2. Stability of mono-variant equilibrium in the nearest 
neighborhood of non-variant points

Now we shall consider the questions, concerning 
the stability of mono-variant equilibria in the nearest 
neighborhood of non-variant points, in the process of state 
parameters change. The mono-variant equilibria states have 
a geometrical image, as mono-variant curves, come into 
non-variant points). The problem was solved for fusibility 
diagrams in a time-consuming manner, using some additional 
relations in particular as demonstrated in a few works [3,6]. 
We shall try to solve this problem considerably easily, using 
criteria of the stability of heterogeneous phases complex 
relatively inϐinitely small state changes [2].

Then we write differential van der Waals equations system 
for the equilibria of the phases pairs (p-ph1 (give it number 1), 
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Figure 2: Diff erent types of the location of non-variant points and p-ph1, phi equilibrium phase fi gurative points in the systems with the diff erent 
components numbers (case of coincidence of the composition of two phases in full or reduced concentration space): gray circles – phases points, dot 
line – invisible tetrahedron face. Symbols: TK (k-type transition points in full or in reduced concentration ranges). Component numbers n: 2.A (n=1[2]), 
2.B (n=2[3]), 2.C (n=3[4]), 2.D (n=4[5]).

corresponding quadratic bilinear forms are determined 
positively, according to Sylvester’s criterion.

Physical sense of the parameters 
( ) ( ) ( ) ( ) ( ) ( )[ ( ) ]a aS S S X X S    

    
   and 

( ) ( ) ( ) ( ) ( ) ( )[ ( ) ]a aV V V X X V    
    

 
 are entropy 

and volume changes in the process of isotherm-isobaric 
formation of 1 mole of β phase from inϐinitely large mass of 
α phase.

Then we write differential van der Waals equations for 
the equilibria of the phases pairs (p-ph1 (give it number 1), 
ph2, ph3, …phr (give them numbers 2, 3, … r) in the metric of 
incomplete Gibbs potential in (n+1)-component system in the 
reduced concentration range (without 1 component) [3,5-7]:

(2) (1) (1) (1) (1 2) (1 2) (1 2)ˆ( )  [1] 1 1
(3) (1) (1) (1 3) (1 3) (1 3)ˆ( )  [1] 1 1

.....................................................................................

Y Y G dY S dT V dP n d

Y Y G dY S dT V dP n d





  
   

  
   

    

    

.....

( ) (1) (1) (1 ) (1 ) (1 )ˆ( )  [1] 1 1
r r r rY Y G dY S dT V dP n d  

   
           

(2.3).

Designations here are similar to the equations (2.1), 

but functions: 
1

  [1] 1 1 2

n
G G n ni ii

 

  


 (where μ1, μi are 

chemical potentials of the solvent and dissolved components), 
,S V   are calculated relative to one mole of n components 

without 1 component-solvent, and vectors ( )Y   characterize 
the position of a ϐigurative point of τ phase in reduced (n)-
dimensional concentration space:

ph2, ph3, …phr (give them numbers 2,3,…r) in the n-component 
system in the variables of 1 phase in the metric of Gibbs 
potential in full concentration range [3,5-7]:

(2) (1) (1) (1) (1 2) (1 2)ˆ( )  

(3) (1) (1) (1) (1 3) (1 3)ˆ( )  

.......................................................................

( ) (1) (1) (1) (1 ) (1 )ˆ( )  

X X G dX S dT V dP

X X G dX S dT V dP

r r rX X G dX S dT V dP

 
  

 
  

 
  

  

  

  
  

(2.1).

Here: ( ) ( )and  V S   – molar phase volumes and entropies

of phase ( ) ( );  and V S     – concentration gradients of
( ) ( )and  V S 

 with the elements

 
( ) ( ) ( ) ( )( / )  and ( / )( ) ( ) ( ) ( ), , , ,, ,

V X S Xi iT P X X T P X Xi n i nk k

   
      
 

, 
correspondingly; ( )X   – vector of the state of ϐigurative point 
of τ phase in concentration space with elements ( ) ( );X dXi

   

– vector ( )X 


 shift at (α-β) equilibrium shift with elements 
( ) ( )ˆ;dX Gi
   – operator, corresponding to the matrix of second 

derivatives ( )Gij
 :

( )2 ( )
( ) ( )  

, , ,

G
Gij

X Xi j T P xk j n


  





 
 
 
 

 (2.2),

Where: ( )G   – molar Gibbs free energy of τ phase. Note, 
that, according to the conditions of diffusional stability of τ 
phase, matrices of operators ( )Ĝ   are nondegenerate, and 
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 1( ) ( ) ( ) ( )  

2

k n
Y n n Y 1i i j ij 1 i=
   

  
  (2.4).

In this case, matrices ( )
[1]G ij
  are also nondegenerate, and 

corresponding quadratic bilinear forms are determined 
positively, according to Sylvester’s criterion [6,7].

( )2 [1]( )
[1] ( ) ( )  

, , , 1

G
G ij

Y Yi j T P yl j n


  



 

 
 
 
 

  

(2.5).

The physical sense of the parameters 

( ) ( ) ( ) ( ) ( ) ( )[ ( ) ],a aS S S Y Y S    
    

      
( ) ( ) ( ) ( ) ( ) ( )[ ( ) ]a aV V V Y Y V    

    
      and 

( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1n n n Y Y n      
      

 

 are entropy, 
volume, and number of moles of 1 component changes in the 
process of isotherm-isobaric formation of 1 mole of β phase 
from an inϐinitely large mass of α phase, moreover, taken into 
account masses of all (n+1) components without 1-st one.

These systems (2.1) (2.3) are really the systems of 
(1-2-3…r)-phase equilibrium shift in different potential 
metrics.

Let us unite all “resulting phases” into a heterogeneous 
complex of phases. Then we write van der Waals equations 
in the metric of complete [and incomplete] Gibbs potential in 
n [(n+1)]-component system in full [reduced concentration 
range (without 1 component)] for the equilibria of the 
producing phase (p-ph1 (give it number 1) and heterogeneous 
complex of resulting phases (note het) [2,9,13]:

( ) (1) (1) (1) (1 ) (1 )ˆ( )  het het hetX X G dX S dT V dP 
  

  
    (2.6),

(1) ( ) ( ) ( ) ( 1) ( 1)ˆ( )  het het het het hetX X G dX S dT V dP 
  

  
    (2.7),

( ) (1) (1) (1) (1 ) (1 ) (1 )ˆ( )  [1] 1 1
het het het hetY Y G dY S dT V dP n d  

   
         (2.8),

(1) ( ) ( ) ( ) ( 1) ( 1) ( 1)ˆ( )  [1] 1 1
het het het het het hetY Y G dY S dT V dP n d  

   
        (2.9),

Where: equations (2.6), and (2.8) are written in the 
variables of producing phase number 1, and equations (2.7), 
and (2.9) in the variables of a heterogeneous complex of 
resulting phases noted – het. The physical sense of all phase 
effects in these equations is absolutely similar to those in the 
equations systems (2.1), and (2.3), but one of the equilibrium 
phases is represented by phases complex. Let us determine 
signs of the effects in different non-variant phase processes 
in Table 1.

A. (crys), (melt), (evap), (solid-evap), (subl), (cond), 
(polym-trans),– crystallization, melting, evaporation, 
evaporation from solid, sublimation, condensation, 
polymorph transformation; 

B. (liquid-delam), (liquid-homog), (solid-delam), (solid-
homog) – delamination in liquid, homogenization of 
liquids, delamination in solid, homogenization of solids, 

C. (condens, cryst), (melt, evap), (subl, polym-trans), (solid-
evap, polym-trans), (cryst, polym-trans), (melt, polym-
trans) – two parallel phase processes from (A);

D. ( ) ( )( ), ( )cryst dissol
solvent solvent , - crystallization, dissolution with 

decrease or increase of solvent molecules when a solvent 
is introduced or removed;

E .
( ) ( hom ) ( ) ( hom )( ), ( ), ( ), ( )liquid delam liquid og solid delam solid og
component component component component

   
–

delamination or homogenization of liquids or solids 
when a component is introduced or removed.

Signs of phase effects in Table 2 are the following:

-  ( ) ( )0, 0cryst meltS S  , because liquid and solid can not form

a critical state in principle [2],

-  (subl) ( ) ( )(cond) 0, 0, 0, 0evap solid evapS S S S     ,

(cond) (subl) ( ) ( )0, 0, 0 0evap solid evapV V V V 
     when we 

shall not consider states, closed to critical and supercritical 
states for equilibrium liquid-vapor,

- ( ) ( )0, 0cryst dissoln nsolvent solvent   when the liquid phase is more 
solvent rich, then all equilibrium solid phases and their 
heterogeneous complex. There are some exotic cases, when 
it is not so, and signs are converted. In this case, so-called 
“forbidden types of solubility diagrams” are realized [14]. But 
this type is very rare (these cases usually are not investigated), 
so one can consider almost without loss of generality that 
signs of solvent phase effects are as mentioned above,

In single component system:
( , ) ( , ) ( , ) ( , )0, 0, 0, 0,condens cryst condens cryst melt evap melt evapS V S V      

(cryst, polym-trans) (melt, polym-trans)0, 0,S S   solid and liquid and 
solid and vapor can not form a critical state.

One can consider the stability of mono-variant equilibria 
near non-variant points only, if he knows the sign of the 
corresponding phase effect of the process p - ph1  ↔ het. So, 
we should exclude from the consideration types of phase 
processes in Table 2: V, VI, VII, VIII, XII).

2.1 Linear independent phases compositions

Single component phase processes type IX, X, and XI in 
Table 2 we shall consider later. Let us consider r-phase non-
variant phase process (n=r-1) in n-component system in full 

( ubl, polym-trans) ( ubl, polym-trans)0, 0,

(solid-evap, polym-trans) (solid-evap, polym-trans)0, 0,

 

 

s sS V

S V
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concentration space at T=const or P=const (equation (2.10), 
types in Table 2: I, II, III, XIII) or in (n+1)-component system 
(n=r) in reduced (without solvent) concentration space at 
T,P=const (equation (2.11), type IV in Table 2):

1 2 2 3 3 ... r rp ph ph ph ph       (2.10),

1 2 2 3 3 ... r rp ph ph ph ph         (2.11),

Where signs ]~[ ii   are arbitrary. In non-variant point come 
or go r-1 curves of mono-variant equilibrium, corresponds 
to coexisting of the phases p - ph1, ph2… phi-1, phi+1, phi+2, …. phr 
(without one of the resulting phase – phi. Let us prove.

Rule II: If the ϐigurative point of the resulting phase phi lies 
in opposition=trans (conjunction=cis) to the ϐigurative point 
of producing phase relative to the hyper-plane of the rest r-2 
resulting phases, then the mono-variant curve comes to the 

Table 2: Signs of phase aff ect diff erent types of non-variant phase processes (non-variant phase processes):

N

Phase process
 “  Producing phase” 



“± resulting phases”
1 2 3 ... rp ph ph ph ph      opened or 

closed system; components number (n);
Phases number (r)

Diagram of phase 
equilibrium,

Full or reduced 

Phase eff ect
of the direct process

1p ph het 

Sign
of the eff ect
of the direct 

process

Phase eff ect
of the reverse

process 1het p ph 

Sign
of the eff ect

of the reverse 
process

I. 
mnki ssssl  ...    closed, 

21,nr  n

Fusibility, P=const, 
full

)(crystS <0 )(meltS >0

II.
mnki

mnki

ssssv
llllv



...
...

   closed, 

21,nr  n

liquid-vapor,
solid-vapor

P=const, full

(cond)S
(subl)S

<0

<0

)(evapS

( )solid evapS 

>0

>0

III.
...

...
i k n m

i k n m

v l l l l
v s s s s
    

     
      closed, 

slv 

liquid-vapor,
solid-vapor

P=const, full

(cond)V
(subl)V

<0

<0

)( evapsolidV 

)( evapsolidV 

>0

>0

IV. mnki ssssl  ...  opened, 

3n,r  n

solubility P=const;
T=const, reduced

)(cryst
solventn <0 )(dissol

solventn >0

V. mnk llll  ...

Closed, 21,nr  n

delamina-tion, 
P=const, full

)( delamliquidS  n.d. ( hom )liquid ogS  n.d.

VI. mnk ssss  ...
Closed, 21,nr  n

delamina-tion, 
P=const, full

( ol )s id delamS  n.d. ( ol hom )s id ogS  n.d.

VII. mnk llll  ...
opened, 3n,r  n

delamina-tion, 
P=const;

T=const, reduced

)( delamliquid
componentn 

n.d. ( hom )liquid og
componentn  n.d.

VIII. mnk ssss  ...
opened, 3n,r  n

delamina-tion, 
P=const;

T=const, reduced

)( delamsolid
componentn 

n.d. ( hom )solid og
componentn  n.d.

IX. slv 
Indiff erently, 

single component, 
absence ),(

),(

crystcondens

crystcondens

V
S <0

<0 ),(

),(

evapmelt

evapmelt

V
S >0

>0

X. ki ssv 

Indiff erently, 13,r  n
single component, 

absence trans)-polym ubl,(

trans)-polym ubl,(

s

s

V
S <0

<0 trans)-polym evap,-(solid

trans)-polym evap,-(solid

V
S >0

>0

XI. ki ssl 

Indiff erently, 13,r  n
single component, 

absence trans)-polym (cryst,

trans)-polym (cryst,

V
S <0

n.d. trans)-polym (melt,

trans)-polym (melt,

V
S >0

n.d.

XII. ki sss 

Indiff erently, 13,r  n

single component, 
absence trans)-(polym

trans)-(polym

V
S n.d.

n.d. trans)-(polym

trans)-(polym

V
S n.d.

n.d.

“n.d.” – not determined.
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non-variant point with the decrease (increase) of temperature 
at P=const; increase (decrease) of pressure at T=const in full 
concentration space; or with the decrease (increase) of solvent 
chemical potential at P, T=const in reduced concentration 
space (without solvent).

Let us distribute the set of the resulting phases ph2, ph3...phr 

into two subsets: I - ph2, ph3...phμ, for which ( ) 0i i   , and II - 

phμ+1, phμ+2, …… phr, for which ( ) 0i i   , herewith subset I can 

not be empty. Let us rewrite (2.10), and (2.11) through the 

modules /)~/(// ii   in full or reduced concentration spaces:

/ / / / ... / /1 2 2 3 3

/ / / / ... / /1 1 2 2

  

  

    

    

p ph ph ph phu u

ph ph phr ru u u u
  (2.12),

/ / / / ... / /1 2 2 3 3

/ / / / ... / /1 1 2 2

  

  

    

    

  

  

p ph ph ph phu u

ph ph phr ru u u u   
(2.13).

In the classical thermodynamic conditions [1,2] masses 
of equilibrium phases are ignored. Let us construct a non-
variant equilibrium, where masses of all equilibrium phases 
are ϐinite and the mass of one of the resulting phases - phi is 
inϐinitely small. 

There are two principal cases:

A) phi belongs to the I subset.

There are three variants of the impact on non-variant 
equilibrium:

- Put to the system an inϐinitely small amount of heat or 
entropy (+QP = +TSP), or

- Act on the system by inϐinitely small volume increase 
(+VT), or

- Act on the system by adding of inϐinitely small solvent 
amount (component number 1) (+n1(P,T)).

In this case process, (2.12), and (2.13) will pass from right 
to left; phase phi will disappear, and the system will pass on 
the mono-variant curve without this phase. On this curve in 
the comparison with a non-variant point:

dTp > 0, dPT < 0, dμ1(P,T) > 0  (2.14),

According to the stability criterion of heterogeneous 
phases complex relatively inϐinitely small state changes [2]:

(het) (het) (het)(dT/dS) 0; (dP/dV) 0; (d /dn ) 0P,n T,n T,P,n1 1i i i 1
  

    
(2.15)

B)  phi belongs to the II subset.

There are also three variants of the impact on non-variant 
equilibrium:

- Withdraw from the system an inϐinitely small amount 
of heat or entropy (-QP = -TSP), or

- Act on the system by inϐinitely small volume decrease 
(-VT), or

- Act on the system by the removal (for example, 
evaporation) of inϐinitely small solvent amount 
(component number 1) (-n1(P,T)).

In this case process, (2.12), and (2.13) will pass from left to 
right; phase phi will also disappear, and the system will pass 
on a mono-variant curve without this phase. On this curve in 
the comparison with a non-variant point:

dTp < 0, dPT > 0, dμ1(P,T) < 0  (2.16),

Also according to the stability criterion of heterogeneous 
phases complex (2.15). Different types of the stability of 
mono-variant equilibrium at state parameters changes are 
represented in Figure 3.

2.2 Linear Dependent Phases Compositions

In these cases phase composition of two resulting phases 
(name them ph2 and ph3) have the same composition in full 
(Types I, II, III) or reduced (without solvent) (Type IV) 
concentration ranges. But, according to physical sense) one 
should recognize, that phases ph2 and ph3 should be only 
solid–polymorph modiϐications of a single substance (Type I 
– fusibility diagrams) or different crystal solvates of a single 
substance (Type IV – solubility diagrams). It was absolutely 
impossible to imagine two different liquid phases with the 
same composition (with the exception of the equilibrium 
of the liquid-crystal phase with the isotropic liquid phase). 
Exclude these exotic cases (Types II, III). Let us prove.

Rule III: If ϐigurative points of two resulting phases ph2 
and ph3 coincide, then all (r-3) mono-variant curves with 
their participation of both ph2 and ph3 phases, come to a non-
variant point with the constancy of temperature at P=const; in 
full concentration space; or with solvent chemical potential at 
P, T=const in reduced concentration space (without solvent). 
Simultaneously, the rest 2 mono-variant curves with the 
participation of ph2 separately from ph3 come to a non-variant 
point: ϐirst – with the increase, second – with the decrease 
of temperature at P=const; in full concentration space; or 
with solvent chemical potential at P, T=const in reduced 
concentration space (without solvent).

For the proof of III Rule let us write the system van der 
Waals equations in the metric of complete [and incomplete] 
Gibbs potential in n [(n+1)]-component system in full [reduced 
concentration range (without 1 component)] for the equilibria 
of the producing phase p-ph1 and both resulting phases ph2 
and ph3 in the variables of p-ph1 with variable composition at 
T=const [T,P=const]:

( ) ( ) ( ) ( )(1)2 1 1 1 2ˆ( )
ph p ph p ph p ph ph

X X G dX S dT
   

 
       (2.17),
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Figure 3: Diff erent types of the stability of mono-variant equilibrium at state parameters changes (case of independence of the composition of all 
phases in full or reduced concentration space): gray circles – producing phases points; arrow directs show the direction of temperature and solvent 
chemical potentials increase, pressure increase. Component numbers n: 3.A, 3B (n=2[3]), 3.C, 3.E, 3D (n=3[4]), 3.E, 3.F, 3G, 3.H, 3I (n=4[5]). The 
location of fi gurative points corresponds to the following fi gure pairs: 3.A-1.B; 3.B-1C; 3.C-1.D; 3.D-1.E; 3.E-1.F; 3.F-1.G; 3.G-1.H; 3.H-1.I; 3.I-1.J.

( )( ) (1) (1)32 ˆ( ) [1]
( )( ) 1 31 2[ ] 01 1 1


 

  
 

  p phph
Y Y G dY

p ph php ph ph
n n d

              

(2.22).

The last equations are valid, because, according to the 
conditions of consideration:

( ) ( )( ) ( )3 32 20, 0
ph p phph ph

X X Y Y


   
                     (2.23),

 0, 01( , )dT dP T P                   (2.24).

Naturally, if ph2 is a more high-temperature modiϐication 
in comparison with ph3, then mono-variant curve p-ph1 – ph2 – 

( ) ( )( ) ( )(1)3 1 31 1ˆ( )
ph p ph php ph p ph

X X G dX S dT
  

 
        (2.18),

( ) ( ) ( )(1) (1)2 1 1 2ˆ( ) [1] 1 1
ph p ph p ph ph

Y Y G dY n d
  

 
  

    (2.19), 

( ) ( )( ) (1) (1)3 1 31 ˆ  ( ) [1] 1 1
ph p ph php ph

Y Y G dY n d
 

 
  

  (2.20).

Subtract from eq. (2.17) eq.(2.18) and form eq.(2.19) 
eq.(2.20) and get

( )( ) ( )(1)32 1ˆ( )

( )( ) 1 31 2[ ] 0


 

  
 

  phph p ph
X X G dX

p ph php ph ph
S S dT

                    
(2.21),
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ph4… phr comes to non-variant point with decrease and mono-
variant curve p-ph1 – ph3 – ph4… phr comes to non-variant point 
with increase of temperature at P=const [solvent chemical 
potential at P, T=const] in full [reduced] concentration space.

2.3 Single-component systems

In this case, the composition of all 3 phases is equal. So, both 
state parameters – T, P on mono-variant curves can change, 
according to the consequence of van der Waals equations:

1 2 1 2[ / ] /
1 2

p ph ph p ph ph
dP dT S Vp ph ph

   
   (2.25),

1 3 1 3[ / ] /
1 3

p ph ph p ph ph
dP dT S Vp ph ph

   
 

 
(2.26),

2 3 2 3[ / ] /
2 2

ph ph ph ph
dP dT S Vph ph

 


              
(2.27).

Signs of different effects are represented in Table 2 for 
Types IX, X, XI, and XII. Directions of T and P changing while 
moving into non-variant points are represented in (Figure 4D-
4F). Sometimes, one can not determine signs of phase effects 

- 1p ph phiS   and especially 1p ph phiV
  , so can not also 

determine dT and especially dP.

3. Thermodynamics of Heterogeneous Systems Rules, 
Concerning Topology of Phase Equilibrium Diagrams

Let us make some remarks, concerning objects of our 
consideration.

A) We shall consider fusibility diagrams at P=const in full 
concentration space in n-component systems in variables T- Xi 
and solubility diagrams at P,T=const in reduced concentration 
in (n+1)-component systems in variables Yi – Yj (Types I, IV). 
So, the producing phase is liquid, and the resulting phases are 
solids. In these cases, concrete resulting phases have constant 
composition or variable composition with preservation of the 
crystal structure – solid solutions in the narrow regions of 
composition changes). Close liquid-vapor diagrams at P=const 
or T=const (and delamination diagrams) in the common case 
do not contain phases with constant composition and can not 
be considered by a used method.

B) Let us exclude all sub-solidus transformations 
completely or delamination in the liquid phase.

C) Also let us exclude systems, where the transformation 
from solid to liquid – dissolution in the solution or melt is not 
accompanied by irreversible chemical reactions, for example, 
solvolysis (hydrolysis). 

D) We shall also consider diagrams of usual systems 
such as M,N…P//X(-Solvent) or M//X,Y...Z(-Solvent) and 
mutual systems M,N…P// X,Y...Z(-Solvent), where: M,N…P are 
cations, or elements of the k-th group of Periodic law - Ak, or 

alcohol groups etc; X, Y...Z are anions, or elements of (8-k)-th 
group of Periodic law – A8-k, or acid groups etc. Let us exclude 
unstable cuts of the mutual diagrams, such as MX-NY…-PZ 
(-Solvent) [15].

Let us consider the simplest phase diagram stable relative 
to both the inϐinitely small and ϐinite state changes “old 
diagram” with the crystallization of old resulting solid phases 
“s-old”. Let us consider the formation of new resulting solid 
phase “s-new” and “new diagram”. This diagram will be 
absolutely stable, but the “old diagram” will lose the stability 
relatively ϐinite state change (namely “s-new” formation). Let 
us prove two auxiliary Lemmas.

Lemma I: In solubility [fusibility] diagram of (n+1)[n]-
component systems can not exist 2 or more non-variant points 
– eutonics-peritonics [eutectics-peritectics] type with the 
same set of solid phases.

Let’s get proof from the nasty one. If in the solubility 
diagram, there are 2 different liquid phase compositions – l1 
and l2, which are in equilibrium with the set of solid phases: 
s1, s2…sn. Let us unite liquid+solid phases into 2 heterogeneous 
complexes: het1 and het2. Let us change the masses of 
equilibrium phases in het1 in such a way, that the composition 
of het1 and het2 in the reduced concentration space will be 
the same: )()( 21 hethet YY


 . One can always do it because 

phase compositions are independent. States of het1 and het2 

correspond to different solvent content )(
1

)(
1

21 hethet nn 
. Then, let us remove (evaporate) solvent from a more rich 
complex - het1, and make it equal to het2. In this process, all 
solutions should transfer into the complex of solid phases 
(eutonics) or should lose k solid phases (k-type peritonics). 
As a result, one will get two ϐinitely different states of a 
heterogeneous system, corresponding to the same pressure, 
temperature, and component masses. This contradicts the 
stability criterion of the heterogeneous system relative to the 
ϐinite state changes (binodal criterion) [1,2]. This criterion 
imposes on the system more stringent restrictions than the 
stability criterion for relatively inϐinitely small state changes 
(spinodal or diffusional stability criterion). In particular, in the 
ternary system impossibility of the intersection of two nodes 
liquid-solid (cuts, connecting ϐigurative points of equilibrium 
phases) for one solid phase at T,P=const follows from both 
criteria, the impossibility of this intersection for two different 
solid phases liquid-solid1 and liquid-solid2 follows only from 
binodal criterion.

The case of the fusibility diagram is absolutely similar. If 
two melts – l1 and l2, are in equilibrium with the set of solid 
phases: s1, s2…sn, and temperatures of non-variant equilibria 
are different T1 ≠ T2 (case T1 = T2 is similar to solubility 
diagrams). Changing masses of s1, s2…sn, for the ϐirst – more 
high-temperature heterogeneous phase complex – het1, align 
the brutto-compositions of both complexes – het1, and het2, in 

full concentration space will be the same: )()( 21 hethet XX


 . 
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Figure 4: Diff erent types of the stability of mono-variant equilibrium at state parameters changes (case of the dependence of the composition of two 
phases in full or reduced concentration space): gray circles – producing phases points; arrow directs show the direction of temperature and solvent 
chemical potentials increase. Component numbers n: 4.A (n=2[3]), 4B (n=3[4]), 4C (n=4[5]) 4.D, 4.E, 4.F (n=1). The location of fi gurative points 
corresponds to the following fi gure pairs: 4.A-2.B; 4.B-2C; 4.C-2.D; 4.D, 4.E, 4.F – 1.A.

A) At evaporation [temperature decrease] in these 
points occurs a non-variant process without the participation 
of the liquid phase, one of the solid phases – s1 (high-
temperature polymorph modiϐication [crystal solvate with 
higher solvent content]) transfers into other solid phases – s2 
(low-temperature polymorph modiϐication [crystal solvate 
with lower solvent content]).

B) Phases s1 and s2 have the same composition in reduced 
[full] concentration space. They are the congruently soluble 
[melting] compounds. The simplest cases are represented in 
Figure 5. One should note, that this type of non-variant point 
meets very rare. In binary fusibility diagrams, they meet in 
some ϐirst percent. In ternary solubility diagrams, we can not 
ϐind any one case (although ternary compounds with different 

Then downgrade temperature from T1 to T2. In this process, 
het1 should transfer into a mixture of solid phases (eutectics) 
or should lose k solid phases (k-type peritectics). This also 
contradicts the stability criterion of heterogeneous systems 
relative to the ϐinite state changes.

Lemma II: In solubility [fusibility] diagram of (n+1)
[n]-component systems can not exist 2 or more non-variant 
transition points type with the same set of solid phases 
(excluding the very rare case of transition points of congruent 
desolvation [congruent polymorph transformation]).

Let us explain the terminology. Transition points 
of congruent desolvation [congruent polymorph 
transformation]) is a non-variant point, with the following 
properties:
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solvent content sometimes meet, all of them somehow are 
soluble incongruently). In the ternary or more component 
fusibility (quaternary or more component solubility) diagrams 
such points are not just rare, but almost unbelievable (we 
do not know any examples). Let us neglect these cases in 
our consideration, but draw graphically the schemes of its 
realization (Figure 5C, 5D).

The proof of Lemma II is similar to Lemma I. If in the 
solubility diagram, there are two liquid non-variant solutions 
l1 and l2, which are in the equilibrium with solid phases: 
s1,s2…sn, and composition in a reduced concentration of two 
crystal-solvates coincides: )()( 21 ss YY


 . If in the reduced 

concentration space points l1 and l2 lie in the conjunction (cis) 
hyperplane, they pass through solid phase points. Let us form 
two heterogeneous complexes – het1 (from phases: l1, s1, s2, s3…
sn) and het2 (from phases: l2, s1, s2, s3…sn), mixing in different 
proportions equilibrium phases. The composition of het1 and 
het2 will be the same, according to all components, except 
solvent. Let us transfer in het1 part of s1 into s2 by removing 
(evaporating) the solvent (if s1 is more reach than s2), l1 and 
l2 will have constant composition. As a result, one can get two 
complexes with different equilibrium liquids and the same 
state parameters. This also contradicts the stability criterion 
of heterogeneous systems relative to the ϐinite state changes.

In the case of fusibility diagrams proof is easy. Transition 
non-variant points should have the same equilibrium 
temperatures – the temperature of polymorph transformation 
phase s1 into phase s2. So, the formation of het1 and het2 by 
mixing in the different proportions phases: l1, s1, s2, s3…sn) and 
l2, s1, s2, s3…sn, immediately contradicts to stability criterion of 
the heterogeneous system relative to the ϐinitely state changes.

One can understand, that such consideration can not be 
applied in the case if the reduced concentration space points 
l1 and l2 lie in the opposition (trans) hyperplane, and pass 
through solid phase points. In this case, it is impossible to 
equalize compositions of heterogeneous complexes, which lie 
in the different hyper-surfaces, relatively mentioned hyper-
plane. This situation may be realized in cases of the formation 
of the phases of congruent polymorph transformation 
[desolvatation] (points Ti

c in Figure 5).

Lemma I and II have obvious consequences:

Consequence I: Passing through a non-variant point in 
solubility [fusibility] diagram of ternary [binary] system jump 
of solid phase composition in reduced [full] concentration 
space occurs in the same direction as solution [melt] 
composition change. 

Consequence II: In solubility [fusibility] diagram of (n+1)
[n]-component system can not coexist separated elements 
of phase diagrams, corresponding to the crystallization of 
the same set of solid phases. In the simple case of solubility 
in ternary system [fusibility in binary system] can not realize 

several branches of crystallization of the same solid phase 
with constant composition. Despite the obvious statement, for 
example in the system, Na2CO3-K2CO3-H2O at 30oC authors [17] 
determined the following order of solid phases crystallization: 
Na2CO3*10H2O; Na2CO3*7H2O; Na2CO3; Na2CO3* K2CO3*6H2O; 
Na2CO3; Na2CO3* K2CO3; 2K2CO3*3H2O. This order directly 
contradicts both consequences I, and II simultaneously.

Consequence III: So, in solubility [fusibility] diagram 
in (n+1)[n]-component system geometrical element of the 
crystallization of “new phase” – Si

new (branch, or surface, or 
volume, or hyper-volume) may locate in phase diagram by 
the only one way – replacing speciϐic metastable non-variant 
point (eutectic-eutonic, peritectic-peritonic, transition points 
– E,P,Ti

old) inside concentration (n+1)[n]-component simplex, 
or metastable non-variant point inside less variant (n+1)
[n]-component sub-system, …or tops of (n+1)[n]-component 
simplex, corresponds to melting point or solubility of 
components in (2)[1]-component sub-systems. This does 
not apply, of course, to phases of congruent polymorph 
transformation [desolvatation] formation Ti

c. Possible and 
impossible types of “new phases” appearance are represented 
in Figures 6-8.

4. Number of Topological Elements in Phase Diagrams 
of Binary, Ternary, and Quaternary Systems

Let us calculate the number of topological elements: non-
variant points, mono-variant curves, surfaces, bi-variant 
surfaces, maybe tri-variant volumes, etc in the diagrams of 
solubility [fusibility] diagram in (n+1)[n]-component systems 
in the in variables Yi – Yj or T-Xi in reduced [full] concentration 
space, correspondingly (Types I, IV).

4.1 Solubility [fusibility] diagram in 3[2]-component 
systems.

Let us denote: R3 full number of solid phases, crystallizing 
in the system; RD

3 – number of solid phases with different 
compositions in reduced [full] concentration space; RT

3 = R3 - 
RD

3 – number of solid phases with the composition, matching 
with one of the phases from RD

3. First of all, suppose, that in 
the system there is no congruent desolvation [polymorph 
transformation] solid phases: RC

3 = 0. Denote N3 – full number 
of non-variant points; NEP

3 – sum number of eutonics-eutectics 
and peritonics-peritectics; NT

3 = N3 - NEP
3 – sum number of 

transition points; L3 – sum number of mono-variant curves. 
From lemma I, II, consequences I-III and Figure 6. follows, that 
each new solid phase generates 1 new mono-variant curve 
and 1 additional non-variant point – Figure 6A, and 6C. If a 
new solid phase eliminates 1 old solid phase no additional 
points and curves are generated – Figure 6D. If a new solid 
phase eliminates 2 old solid phases 1 old point curve is 
eliminated. In the common case, if the formation of the Snew 
solid phase eliminates Z old non-variant points – E,P,Told, then 
it also eliminates Z-1 mono-variant curves and generates 2 
new non-variant points – E,P,Tnew and 1 mono-variant curves. 
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Figure 7: Some possible (7.A, 7.B. 7.C, 7.D, 7.F, 7.G, 7.I) and impossible (7.E, 7.H - congruent desolvation [polymorph transformation], 7.J, 7.K, 7.L, 
7.M, 7.N, 7.O) types of “new phases” appearance in fusibility [solubility] diagrams of quaternary [ternary] systems. Dot lines correspond to metastable 
mono-variant curves, gray circles – to non-variant old and new points, and A3 – the fi gurative point of the component.
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So the total number of generated elements is 2-Z non-variant 
points and also 2-Z mono-variant curves. Such construction in 
elementary graph theory is named an L-chain [18] with tops 
in non-variant points and edges are mono-variant curves. So:

L3 = R3  (4.1),

N3 = R3 - 1  (4.2),

NEP
3 = RD

3- 1 (4.3),

NT
3 = R3 – 1 – (RD

3- 1) = RT
3 (4.4).

If in the considered type of the systems there are congruent 
desolvation [polymorph transformation] solid phases: RC

3  
≠ 0, one should divide the diagram into the parts between 
component and compound or compound1 – compound2 (such 
reception is often named “diagrams triangulation”). In this 
case, the congruent desolvation [polymorph transformation] 
solid phase transfers into usual component crystal solvates 
[component polymorph modiϐication] phases, and one can 
use formulas (4.1-4.4). Let us show the application of these 
formulas on the concrete examples – Figure 9.

4.2 Solubility [fusibility] diagram in 4[3]-component 
systems

Let us denote: R4 full number of solid phases, crystallizing 
in the system; RD

4 – number of solid phases with different 
compositions in reduced [full] concentration space; RT

4 
= R4 - RD

4 – number of solid phases with the composition, 
matching with one of the phases from RD

4. Also suppose, that 
in the system there are no congruent desolvation [polymorph 
transformation] solid phases: RC

4 = 0 (remind, that we have 
not found any one example of diagrams with such phase 
formation). Denote Nsur

4 – number of surfaces (ϐields) of single 
phase crystallization; N4 – full number of non-variant points; 
NEP

4 – sum number of eutonics-eutectics and peritonics-
peritectics; NT

4 = N4 - NEP
4 – sum number of transition points; 

L4
tr – sum number of mono-variant curves in concentration 

simplex in in-mutual systems (Roseboom triangle), L4
sq – sum 

number of mono-variant curves in concentration simplex in 
mutual systems (Jaenecke square); (3) (3) (3), ,N N NEP T    - 
sum number of all non-variant points, eutectics-peritectics 
[eutonics-peritonics], transition points in all 3 (in-mutual) 

or 4 (mutual) sub-systems; (3)L  - sum number of all mono-

variant curves in all 3 (in-mutual) or 4 (mutual) sub-systems 
Table 3.

From lemma I, II, consequences I-III and Figure 7. follows, 
that:

Such construction is also a usual graph [18] with the tops 
in non-variant points and edges in mono-variant curves. 
Direct calculation gives us:

So:

Nsur
4 = R4                                 (4.5),

(3)4 42 2N R N     (4.6),
(3)4 4 2 2N R NEP D EP         (4.7),

  (3)4 4 4 4 –  1 –   1   N R R R NT D T T     (4.8),

(3)4 43L R Ltr                          (4.9),

(3)4 43 1L R Lsq   
                (4.10).

Let us show the application of these formulas on the 
concrete examples – Figure 10.

4.3 Solubility [fusibility] diagram in 5[4]-component 
systems

The number of geometrical elements in such systems is not 
invariant with the number of equilibrium phases and number 
of geometrical elements in the sub-systems. These numbers 
depend on the topology structure of concrete phase diagrams. 
This fact can be illustrated by Figure 8, where one can see some 
possible variants of the new solid phase appearance, which 
generates a different and undeϐined number of elements. 
This fact is not absolutely unexpected. For example from the 
graphs theory, it is known, that [21]:

A) There is a minimal number of colors for coloring 
L-chain to boundary links should have different colors. This 
minimal color number is equal to 2.

B) There is a minimal number of colors for coloring a plan 
geographic map (without enclaves, loops, etc) to boundary 
countries should have different colors. This minimal color 
number is equal to 3.

Table 3: The number of geometrical elements changes in the case of “new solid phase” formation.
Number of old 

non-variant points 
elimination

Number of old mono-
variant curves elimination

Number of new 
non-variant points 

formation

Number of new 
mono-variant curves 

formation

Number of non-
variant points

change

Number of mono-
variant curves 

change 
Figure

-1 0 +3 +3 +2 +3 7.A
-2 -1 +4 +4 +2 +3 7.B, 7.D
-3 -2 +5 +5 +2 +3 7.C
-1 0 +3 +3 +2 +3 7.G
-3 -2 +5 +5 +2 +3 7.F
0 1 +2 +3 +2 +3 7.I

-Z -Z+1 Z+2 Z+3 +2 +3 All possible 
variants in Fig.7
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Figure 9: Solubility diagram in ternary system NaCl-CdCl2-H2O at 25C (9.A) and fusibility diagram in binary system V2O5-V2O5*3Li2O (9.B) after 
triangulation of fusibility diagram in binary system V2O5-Li2CO3 (5.A): gray circles – non-variant points – eurectics-eutonics - Ei, transition points - Ti, 
black circles – distectics-distonics. Initial data – from [5,19], correspondingly.
Let us check formulas (4.1)-(4.4) in these examples:
System NaCl-CdCl2-H2O at 25C:

L3 = R3  = 4; N3 = R3 – 1= 4 -1 =3 (Ei); NEP
3 = RD

3-1 = 4 – 1 =3(Ei); NT
3 = R3 – 1 – (RD

3- 1) = 3 – 3 =0;

System V2O5-V2O5*3Li2O:

L3 = R3  = 7; N3 = R3 – 1= 7 -1 =6 (Ei, Ti); NEP
3 = RD

3- 1 = 4 – 1 =3(Ei); NT
3 = R3 – 1 – (RD

3- 1) = 6 – 3 =3 (Ti).
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Figure 10: Fusibility diagram in ternary mutual system Tl+, Pb2+//Cl-, I- (9.A) and solubility diagram in quaternary mutual system Na+, K+//Cl-, CO3
2- 

-H2O at 25C (9.B) and: gray circles – non-variant points – eurectics-eutonics (peritectics-peritonics - EPi, transition points - Ti. Solid phases (Na+, K+//
Cl-, CO3

2- -H2O): S1 = NaCl; S2 = Na2CO3*7H2O; S3 = Na2CO3*10H2O; S4 = Na2CO3* K2CO3*6H2O; S5 = K2CO3*1.5H2O. Solid phases (Tl+, Pb2+//Cl-, I-): 
S1 = PbCl2; S2 = TlCl*2PbCl2; S3 = 3TlCl*PbCl2; S4 = TlCl; S5 = TlI; S6 = 3TlI*PbI2; S7 = TlI*PbI2; S8 = PbI2; S9 = PbCl2*PbI2; Initial data – from [20, 5], 
correspondingly.
Let us check formulas (4.5)-(4.10) in these examples:

System Tl+, Pb2+//Cl-, I- 
R4 = Nsur

4 = 12 (all phases); RD
4 = 9 (phases with diff er composition), RT

4 = 3 (S1, S7, S8 have the pairs with the same composition). In the binary 

sub-systems
(3) (3) (3)3 1 3 2 9, 1, 10,        N N NEP T  (3) 4 2 4 4 14     L . According to our formulas, one can expect NT

4 = 

2*3-1 = 5 (T1-T5 in Fig.10.A); NEP
4 = 2*9-9-2=7 eutectics-peritectics (EP1-EP7 in Fig.10.A); N4 = 2*12-10-2=12 non-variant points (see Fig.10.A). Also 

one should expect L4
sq = 3*12-14+1=24 mono-variant curves (during calculations the “short curves” are not to be missed, for example from the point 

T4 to the side TlI-PbI2”).
System Na+, K+//Cl-, CO3

2- -H2O.
One can see, that: R4 = Nsur

4 = 6 (all phases); RD
4 = 5 (phases with diff erent composition), and RT

4 = 1 (S3 have the pairs with the same composition). 

In the ternary sub-systems
(3) (3) (3)2 1 1 1 5, 2, 7,        N N NEP T  (3) 4 3 2 2 11     L . According to our formulas, one can 

expect NT
4 = 2*1-2 = 0 (absence in Fig.10.B); NEP

4 = 2*5-5-2=3 eutonics-peritonics (EP1-EP3 in Fig.10.B); N4 = 2*6-7-2=3 non-variant points (see 
Fig.10.B). Also one should expect L4

sq = 3*6-11+1=8 mono-variant curves. All calculations are absolutely correct.



Non-variant phenomena in heterogeneous systems. New type of solubility diagrams points

 www.advancechemjournal.com 095https://doi.org/10.29328/journal.aac.1001047

C) There is no minimal number of colors for coloring 
volume cellular structure, because this parameter is not 
invariant, and depends on the topology of the volume 
structure.

4.4 Phase equilibrium diagrams with solid solutions 
and liquid-vapor equilibrium

It is interesting to note, that formulas (4.1)-(4.9) may 
applied successfully with the systems with solid solutions 
crystallization if we use van der Waals phase determination. So 
one should distinguish two phases with the same quantitative 
composition (for example CoxNi1-xSO4*7H2O (monoclinic) and 
CoxNi1-xSO4*7H2O (rhombus), because they fundamentally are 
described by different state equations. An essential condition 
of the belonging of the set of solid solutions to one phase is the 
conservation of crystal structure (syngony).

Calculation of phase elements in the diagrams of phase 
equilibrium liquid-vapor (with delamination in liquid phases) 
is absolutely trivial.

5. A new type of non-invariant points and phase 
processes in the solubility diagrams of multicomponent 
systems

Speciϐic, never met before, types of non-variant points 
in the solubility diagrams of multicomponent systems, are 
realized when in the diagram appears the curve (ϐield, surface, 
volume, hyper-volume) of crystallization of solid solvent. 
In the future, we will refer to such non-invariant points as 
solvent crystallization points – SC points. Such points have 
very special topological and physicochemical features on 
isothermal-isobaric solubility diagrams. And their topological 
analogues on fusibility diagrams or liquid-vapor equilibrium 
diagrams simply do not exist. Earlier, authors, who elaborated 
classiϐication of non-variant equilibria in solubility diagrams 
missed this special type of non-variant points [5,13,22-26]. 
For this fact, there is a simple explanation. Diagram elements 
for solid solvent crystallization are realized, as a rule, at low 
temperatures. For such solvent as water, for example, at T ≤ 
0 °C, and such data in water-salt systems even more or less 
accessible (see, for example, solubility references [27,28]). 
But for the solvents - low molecular weight alcohols, alkanes, 
aromatic compounds, etc. temperature of the appearance of 
SC-points even lower T ≤ -n.10C, and such data in the literature 
are practically absent. Let us assign for the solid phase, which 
is pure solvent, symbol S1. For the diagrams ϐigurative point of 
the solid phase S1, can not be described in the reduced solvent-
free concentration space, because, according to eq. (1.8), 
when calculating the Jaenecke index in this phase uncertainty 
generates non-settlement:

1 1( ) ( ) ( ) ( )1 1 1 10 / 0; 1
22

n ns s s s
Y n n Yi i ik ik

 
   


 (5.1),

As summation in (5.1) is carried out for all dissolved 
components or without solvent, and the solid phase does not 
contain such components, only solvent.

So, one can not also determine the parameters of the non-
variant process of isotherm solvent evaporation from non-
variant liquid solution 

1s
   in eq. (1.11). Such a non-variant 

process of solvent evaporation will cause simultaneous 
dissolution of the solid solvent phase - S1, until whole S1 phase 
dissolves. All this process should be realized at the condition 
of the constancy of solvent activity. When whole S1 phase 
dissolves system becomes mono-variant, heterogeneous 
system will come out from SC-point to a mono-variant curve 
without S1 phase, and solvent activity with further evaporation 
of water, will begin to decrease.

Into non-variant SC-point in n-component system coexist n 
phases: saturated solution, n-1 solid phases (s1,s2 … sn-1), one of 
which is pure solid solvent - s1. Into SC-point come (n-1) mono-
variant curves - without one of the solid phases from the set 
(s1,s2 … sn-1). All (n-2) mono-variant curves, containing S1 come 
to SC-point at constant water activity, and only 1 mono-variant 
curve, without s1, containing (s2 … of sn-1) come to SC-point when 
increasing water activity. None of the mono-variant curves is 
coming to the SC-point when decreasing water activity. This 
behavior is absolutely unique among other non-invariant 
points on solubility diagrams. 

It is quite clear, that the authors, classifying earlier diagrams 
of fusibility or liquid-vapor phase equilibria, did not note such 
non-invariant points, they are absent here [6,29,30]. Really, 
these diagrams (which should be full topological analogs 
of describing solubility diagram) exist in full concentration 
space of variables ( 

X ). And it is impossible to imagine the 
existence of an equilibrium solid phase, which consists of the 
component, missing in the system.

In order to demonstrate the realization of SC-point in real 
systems, we selected two ternary and mutual quaternary 

water-salt systems: 2 2 , / / 4 2Na Ni SO H O     at -3 0C and 
2 2, / / , 4 2Na Ni Cl SO H O      at -5 0C, which are represented 

below in Figures 11, 12. The calculation is based on the 
equations of the classical K.Pitzer model [31-33]. The 
algorithm of phase equilibrium calculation in such systems 
(which is not the subject of the present article) is also in detail 
represented in [5,34,35]. It is very clear from Figures 11,12, 
that SC-points in both systems possess all the characteristics, 
described above in section 5.

The authors hope that the results obtained in the work 
will be further extended and extended to invariant points and 
processes not currently considered (for example, associated 
with the nematic-isotropic phase or transformations of the 
second kind), as well as with special types of phase equilibria, 
which are carried out only in systems involving unusual 
phases - delaminated vapor, supercritical ϐluids, liquid 
crystals, plasma, etc.
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Figure 11: Solubility diagram in ternary system 2 2, / / 4 2
   Na Ni SO H O  at -3 0C in the variables water activity – Yaenecke indexes; points – 

calculation by K.Pitzer equations, E – eutonics, SCi red circles – solution crystallization points.

Figure 12: Solubility diagram in quaternary mutual system 2 2, / / , 4 2
    Na Ni Cl SO H O  at -50C in ions Yaenecke indexes square; open circles – 

calculation by K.Pitzer equations, E – eutonics, SC red circles - solution crystallization points, P – peritonics, Oi – points of crystal-hydrate coexisting. 
Water activity values are represented near calculated points in the crystallization curves.
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