Research Article

Fabrication of novel $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}$ nanocomposites as efficient, innovative and recyclable nanocatalysts for the synthesis of quinazolinone derivatives under solvent-free conditions

Fereshteh Javidfar and Manoochehr Fadaeian*
Department of Chemistry, Qom Branch, Islamic Azad University, Qom, Iran

Abstract

For the first time, this research has developed an efficient and novel approach to high to excellent yields for synthesizing Quinazolinone derivatives. Also, the synthesis of Quinazolinone derivatives has been carried out in the presence of $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}$ nanocomposite as a novel heterogeneous catalyst and a green under solvent-free conditions and in a short time and excellent yields for the first time. Various structural and morphological characteristics of the nanocatalyst were employed for the catalyst characterization, such as FT-IR, XRD, FE-SEM, EDX and VSM analyses. All characterization data were checked with each other so that the structure of the nanocatalyst was exactly characterized. The reactions were carried out in the presence of a low amount of nanocatalyst at $100{ }^{\circ} \mathrm{C}$ under solvent-free conditions for a short period of time. The proposed nanocomposite exhibits excellent catalytic activity. One of the most important advantages of this method is easy magnetic nanocatalyst separation, green condition, excellent recoverability and easy workup.

More Information

*Address for correspondence: Dr. Manoochehr Fadaeian, Department of Chemistry, Qom Branch, Islamic, Azad University, Qom, Iran, Email: fadaeian@qom.iau.com;
fadaeian_m@yahoo.com
Submitted: July 25, 2022
Approved: August 30, 2022
Published: September 02, 2022
How to cite this article: Javidfar F, Fadaeian M. Fabrication of novel $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}$ nanocomposites as efficient, innovative and recyclable nanocatalysts for the synthesis of quinazolinone derivatives under solvent-free conditions. Ann Adv Chem. 2022; 6: 043-047.

DOI: 10.29328/journal.aac. 1001030
Copyright license: © 2022 Javidfar F, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Keywords: Quinazolinone derivatives; Heterogeneous; Lanthanum; Magnetic nanocomposite

OPEN ACCESS

Introduction

In recent years, one of the main challenges facing scientists is to make the materials they utilize as environmentally friendly as possible. Therefore, the idea of green chemistry is raised [1].

Graphene, the thinnest and strongest material in the world, was discovered in 2004 [2]. Graphene has a two-dimensional
(2D) structure of a honeycomb lattice layer of carbon atoms due to unique properties such as adjustable surface properties, high thermal stability, and excellent electronic conductivity. Graphene is an excellent candidate for catalysts. One of the most important derivatives of graphene is graphene oxide (GO), which contains hydroxyl and epoxide groups and carboxyl groups that organic molecules can modify and metal oxide nanoparticles with magnetic properties [2,3]. Graphene
oxide (GO) was attention as an excellent carrier for transition metal ions with high conductivity, high mechanical and wide specific surface area [4].

Recently, cobalt oxide nanoparticles $\left(\mathrm{Co}_{3} \mathrm{O}_{4}\right)$ are an important p-type magnetic semiconductor due to their properties such as low cost, good electrical conductivity, environmental compatibility, simple preparation, and high chemical and physical stability. It has been increasingly considered a catalyst in various reactions [5].

Lanthanides were discovered in 1794 [6]. Lanthanum oxide $\left(\mathrm{La}_{2} \mathrm{O}_{3}\right)$, due to its properties such as unique electronic and basic structure, excellent paramagnetic sensitivity, saturated magnetization, and the largest band gap, can be an excellent candidate for improving catalytic activity [3,6,7].

Recently, Quinazolinones have attracted the attention of chemists due to their unique properties, such as antifungal, antimalarial, antihypertensive, anticonvulsant and antiparkinson [8,9].

In this work, we report a simple and efficient method for synthesizing quinazolinone derivatives in the presence of $\mathrm{Co}_{3} \mathrm{O}_{4} / \mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}$ nanocomposite as a novel nanocatalyst under solvent-free conditions at $100^{\circ} \mathrm{C}$.

Experimental

Sigma Aldrich and Merck prepared all solvents and reagents used in this work with excellent purity. Melting point (m.p) was operated by Electro-Thermal 9200 and FT-IR analysis was obtained by PerkinElmer 1600 FTIR spectrometer. Bruker confirmed 1 H and 13 C Nuclear Magnetic Resonance (NMR) spectroscopy at 300 and 75 MHz , respectively (in DMSO, internal reference: TMS). Philips-X'pertpro, an X-ray diffractometer utilizing Ni -filtered $\mathrm{Cu} \mathrm{K} \alpha$ radiation, was used for operating X-ray Diffraction (XRD) analysis at a scanning speed of 2 min1 from 10 to 100 (2Ө). Magnetic properties were characterized by a Vibrating Sample Magnetometer (VSM, Taban laboratory, Tehran, Iran) at room temperature. In addition, the morphology and size of samples were investigated by the Scanning Electron Microscope (SEM) and Energy-Dispersive Spectroscopy (EDS, EDX).

Preparation of $\mathrm{CO}_{3} \mathrm{O}_{4}$ nanoparticles

According to previous literature, $\mathrm{Co}_{3} \mathrm{O}_{4}$ NPs were synthesized was reported to be successful [10]. At the first step, in a round bottom flask, about 8.60 g of cobalt (II) nitrate was dissolved in 100 ml of Ethanol for about half a min. After this step, about 2.14 g of Ethane dioic acid was slowly added, and the reaction mixture was stirred for 120 min at $45^{\circ} \mathrm{C}$. The precipitate obtained containing cobalt oxalate (II) $\left(\mathrm{CoC}_{2} \mathrm{O}_{4}\right)$ powder was collected by centrifuge followed by calcined at $400^{\circ} \mathrm{C}$ for 120 min to generate $\mathrm{Co}_{3} \mathrm{O}_{4}$ nanoparticles.
Preparation of $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{GO}$
$\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{GO}$ nanocomposite was fabricated by dispersing
about 0.5 g of $\mathrm{Co}_{3} \mathrm{O}_{4}$ in 25 mL deionized water that was added 0.1 g wise into GO (50 mL , aq.) by the Hummer method [11]. After that, the reaction mixture was stirred for 60 min at 60 ${ }^{\circ} \mathrm{C}$. In the final stage, the nanocomposite was separated by an external magnet, washed three times with deionized water and dried [3].

Procedure for the preparation of $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}$

According to previous literature, $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}$ nanocomposites were synthesized. Nanocomposites were synthesized [3,7] -approximately $0.1 \mathrm{~g} \mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{GO}$ nanocomposites in 50 mL deionized water and sonicated for 60 min . About 0.05 g of $\mathrm{LaCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ was added and the reaction mixture was stirred under reflux conditions for 120 min. Fabricated nanocomposites were collected through an external magnet and then washed thrice with distilled water Scheme 1.

General procedure for the synthesis of quinazolinone

Typically, 1,3-benzoxazine-4-one derivatives (0.001 mol), aniline derivatives (0.001 mol) and $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}(0.05 \mathrm{~g})$ were added to the tube and prepared in an oil bath at $100^{\circ} \mathrm{C}$. The reaction mixture was stirred using a magnetic stirrer continuously. The thin-layer chromatography technique checked the reaction mixture and then the catalyst was separated by an external magnet. Finally, the product was recrystallized with hot ethanol to obtain a pure product (Figure 1). All products were investigated by Melting Point (m. p), ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and FTIR. The spectral data of all are provided.

Results and discussion

The FT-IR spectra are utilized to analyze the prepared nanocrystals. FTIR spectra of the $\mathrm{Co}_{3} \mathrm{O}_{4}$ NPs and $\mathrm{Co}_{3} \mathrm{O}_{4} @$

Scheme 1: Preparation of $\mathrm{Co}_{3} \mathrm{O}_{4} @ G O / L \mathrm{La}_{2} \mathrm{O}_{3}$

$\mathrm{R}^{1}=\mathrm{H}, \mathrm{I} \quad \mathrm{R}^{2}=\mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{6} \quad \mathrm{R}^{3}=\mathrm{H}, \mathrm{NO}_{2}, \mathrm{Me}, \mathrm{OMe}$
Figure 1: Synthesis of benzoxazine-4-one, aniline, in the presence of $\mathrm{Co}_{3} \mathrm{O}_{4} / \mathrm{GO}$ / $\mathrm{La}_{2} \mathrm{O}_{3}$ under solvent-free conditions and 100.

Figure 2: FT-IR spectra of $\mathrm{Co}_{3} \mathrm{O}_{4} \mathrm{NPs}(\mathrm{a}), \mathrm{Co}_{3} \mathrm{O}_{4} / \mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}$ (b).
GO/ $\mathrm{La}_{2} \mathrm{O}_{3}$ are shown in Figure 2. Two strong characteristic absorptions at 573 and $663 \mathrm{~cm}^{-1}$ belong to the Co-O (Figure 2a,b). The absorption at $1618 \mathrm{~cm}^{-1}$ (aromatic C=C) can belong to skeletal vibrations of graphitic domains. Also, the peaks around $3426 \mathrm{~cm}^{-1}$ ascribe to the OH group bands in GO (Figure 2b) [11]. The characteristic absorptions showed at $519 \mathrm{~cm}^{-1}$ belong to the formation of $\mathrm{La}_{2} \mathrm{O}_{3}$, in which the range between 400 and $660 \mathrm{~cm}^{-1}$ corresponds to the literature (Figure 2b) [12].

In the EDS spectrum observed in Figure 3, the presence of elements $\mathrm{C}, \mathrm{O}, \mathrm{Co}$ and La is determined according to the energy, demonstrating the product purity.

FESEM was utilized to measure the morphology, particle size and shape. The catalyst particle size was measured at about 62.5 nm . A uniform spherical shape was observed for $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}$ nanocomposites (Figure 4).

The data relating to the XRD analysis is shown for samples $\mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{Co}_{3} \mathrm{O}_{4}$ nanoparticles and $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}$ nanocomposite in Figure 5(a-c). Characteristic peaks for $\mathrm{Co}_{3} \mathrm{O}_{4}$ are shown in the region at 2θ of $31.47^{\circ}, 37.04^{\circ}, 45.01^{\circ}, 55.86^{\circ}$, 59.57° and 65.44°, which correspond to (220), (311), (400), (422), (511) and (440) respectively. The network parameters were in excellent agreement with JCPDS card number 01-0781969 [13]. The broad diffraction peaks of GO indicate around $2 \theta=10.26^{\circ}$ and it is in good match with the previous reports $[3,14]$.Also, $\mathrm{La}_{2} \mathrm{O}_{3}$ NPs had peaks that are explained at 27.2912°, $28.3643^{\circ}, 39.6213^{\circ}$ and 48.1237° are related to $\mathrm{La}_{2} \mathrm{O}_{3^{\prime}}$, which correspond to (222), (300), (400) and (622) respectively ($\mathrm{La}_{2} \mathrm{O}_{3}$; JCPDS card no.04-0856) [15] Characteristic peaks for $\mathrm{Co}_{3} \mathrm{O}_{4}$ and $\mathrm{La}_{2} \mathrm{O}_{3}$ illustrate that the structure of both of them has not changed during the combination process.

The magnetic behaviors of $\mathrm{Co}_{3} \mathrm{O}_{4} \mathrm{NPs}$ and $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{Cs} /$ $\mathrm{La}_{2} \mathrm{O}_{3}$ were shown by a vibrating sample magnetometer (VSM) at room temperature (Figure 6). There is no hysteresis, coercivity, and remanence in bare $\mathrm{Co}_{3} \mathrm{O}_{4} \mathrm{NPs}$ and $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{Cs} /$ $\mathrm{La}_{2} \mathrm{O}_{3}$ samples at room temperature that show their typical superparamagnetic behaviors. $\mathrm{Co}_{3} \mathrm{O}_{4} \mathrm{NPs}$ and $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{Cs} /$

Figure 3: EDS spectrum of $\mathrm{CO}_{3} \mathrm{O}_{4} / \mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}$.

Figure 4: FESEM spectrum of $\mathrm{Co}_{3} \mathrm{O}_{4} / \mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}$ (a-c).

Table 1: Synthesis of Quinazolinone Derivatives.

Entry	R^{1}	R^{2}	R^{3}	Time (min)	Yields\%	Melting point
1	H	CH_{3}	NO_{2}	15	87	158-159
2	H	CH_{3}	CH_{3}	18	83	115-116
3	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	NO_{2}	20	90	126-127
4	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	CH_{3}	20	90	209-210
5	1	$\mathrm{C}_{6} \mathrm{H}_{5}$	CH_{3}	15	93	183-184
6	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	OCH_{3}	17	87	222-223
7	1	$\mathrm{C}_{6} \mathrm{H}_{5}$	OCH_{3}	20	89	165-166
8	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	15	70	172-173
9	1	$\mathrm{C}_{6} \mathrm{H}_{5}$	NO_{2}	20	80	150-151
10	1	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	20	74	138-139

Reaction conditions: 1,3-benzoxazine-4-one derivatives (0.001 mol), aniline derivatives (0.001 mol), $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{GO}^{2} \mathrm{La}_{2} \mathrm{O}_{3}$, at $100^{\circ} \mathrm{C}$ under Solvent-Free conditions.

Table 2: Comparing the efficiency of $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}$ with other reactions reported in the literature for the synthesis of quinazolinone.
Entry
$\mathrm{La}_{2} \mathrm{O}_{3}$ have superparamagnetic behavior, facilitating magnetic separation. The saturation magnetization value (Ms) $\mathrm{Co}_{3} \mathrm{O}_{4}$ NPs and $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{Cs} / \mathrm{La}_{2} \mathrm{O}_{3}$ nanocomposites were 46.5 and $25.8 \mathrm{emu} / \mathrm{g}$, respectively. Howbeit, the addition of the GO layer and $\mathrm{La}_{2} \mathrm{O}_{3}$ nanoparticles on the $\mathrm{Co}_{3} \mathrm{O}_{4}$ surface Caused decreased magnetic behaviors. $\mathrm{Co}_{3} \mathrm{O}_{4} \mathrm{NPs}$ and $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{Cs} /$ $\mathrm{La}_{2} \mathrm{O}_{3}$ nanocomposite saturation magnetization was enough for a rapid magnetic separation by an external magnet.

As shown, Table 1 summarizes the results from the reaction of $1,3-(4 \mathrm{H})$-benzoxazine-4-one derivatives and aniline derivatives in the presence of $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}$. A wide range of $1,3-(4 \mathrm{H})$-benzoxazine-4-one derivatives were successfully converted into Quinazolinone Derivatives with great yields within a short reaction time (Table 1, entries 1-10).

In Table 2, a vast comparison of catalytic activity $\mathrm{Co}_{3} \mathrm{O}_{4} @$ $\mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}$ was made with other conditions of reactions utilized in the preparation of quinazolinone (Table 2, entry 12-20). In conclusion, the catalyst has excellent results and offers a very gentle and green option.

XRD analysis of the $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}$ nanocatalysts after five reuse cycles is indicated in Figure 7b. Characteristic

Figure 7: Comparison of XRD of the prepared $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}$ (a) before and (b) after 5 runs.
peaks for $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}$ are conserved, displaying that the nanocatalysts have been stable and pure.

Conclusion

Briefly, a highly efficient, powerful and green protocol was developed to synthesize 1,3-(4H)-benzoxazine-4-one derivatives and aniline derivatives under solvent-free conditions at $100{ }^{\circ} \mathrm{C}$ using novel $\mathrm{Co}_{3} \mathrm{O}_{4} @ \mathrm{GO} / \mathrm{La}_{2} \mathrm{O}_{3}$ nanocatalyst. The magnetically recoverable nanocatalyst was
characterized by FT-IR, FE-SEM, XRD, EDX and VSM analyses. This nanocatalyst has various advantages, such as being eco-friendly, having mild reaction conditions, low cost, high efficiency and being easily separated magnetically.

Supplementary materials: The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrums of compounds are available online.

Thanking: The authors are commendable for the financial support of the Research Council of the Islamic Azad University, Qom, Iran.

References

1. Al-Toum R, Bdour S, Ayyash H. Adenovirus Infections in Jordanian Hospitalized Paediatric Patients: Prevalence and Clinical Features. J Med J. 2009; 43(3):171-179.
2. Ighilahriz-Boubchir K, Boutemeur-Kheddis B, Rabia C, MakhloufiChebli M, Hamdi M, Silva AMS. Recyclable Keggin Heteropolyacids as an Environmentally Benign Catalyst for the Synthesis of New 2-Benzoylamino-N-phenyl-benzamide Derivatives under Microwave Irradiations at Solvent-Free Conditions and the Evaluation of Biological Activity. Molecules. 2017 Dec 21;23(1):8. doi: 10.3390/ molecules23010008. PMID: 29267237; PMCID: PMC5943967.
3. Shi P, Dai X, Zheng H, Li D, Yao W, Hu Ch. Synergistic catalysis of $\mathrm{Co}_{3} \mathrm{O}_{4}$ and graphene oxide on $\mathrm{Co}_{3} \mathrm{O}_{4} / \mathrm{GO}$ catalysts for degradation of Orange II in water by advanced oxidation technology based on sulfate radicals. Chem. Eng. J. 2014; 240: 264-270.
4. Javidfar F, Fadaeian M, Safaie Ghomi J. Synthesis of $\mathrm{Fe}_{3} \mathrm{O}_{4} @ \mathrm{GO}$ Nanocomposites Modified with $\mathrm{La}_{2} \mathrm{O}_{3}$ Nanoparticles as an Efficient Catalyst for Selective Oxidation of Aromatic Alcohols to Aldehydes. Polycycl, Aromat. Compd. 2021.
5. Can K, Fang L, Hui S, Zhou Zh, Benjie Z, Wei Li. $\mathrm{Co}_{3} \mathrm{O}_{4} / \mathrm{GO}$ catalyst as efficient heterogeneous catalyst for degradation of wastewater containing polyacrylamide (PAM). Water Cycle. 2021.
6. Islami M, Zarrabi A, Tada S, Kawamoto M, Isoshima T, Ito Y. Controlled quercetin release from high-capacity-loading hyperbranched polyglycerol-functionalized graphene oxide. Int J Nanomedicine. 2018 Oct 5;13:6059-6071. doi: 10.2147/IJN.S178374. PMID: 30323593; PMCID: PMC6179725.
7. Gadolin J. Examination of a black, dense mineral from the Ytterby Quarry in Roslagen. Proceedings of the Royal Academy (Stockholm, new series) (in the original Swedish: Undersökning af en svart tung Stenart ifrån Ytterby Stenbrott i Roslagen. K Vetenskaps-akad nya handl). 1794; 15: 137-155.
8. Javidfar F, Fadaeian M, Ghomi JS. $\mathrm{La}(\mathrm{OH})_{3}$ nanoparticles immobilized on $\mathrm{Fe}_{3} \mathrm{O}_{4} @$ chitosan composites as novel magnetic nanocatalysts for sonochemical oxidation of benzyl alcohol to benzaldehyde. RSC Adv. 2021 Nov 8;11(57):35988-35993. doi: 10.1039/d1ra05848g. PMID: 35492745; PMCID: PMC9043185.
9. Khosropour AR, Mohammadpoor-Baltork I, Ghorbankhani H. Bi (TFA) ${ }_{3}-[n b p] \mathrm{FeCl}_{4}$: a new, efficient and reusable promoter system for the synthesis of $4(3 \mathrm{H})$-quinazolinone derivatives.Tetrahedron. Lett. 2006; 47(21): 3561-3564.
10. Narasimhulu M, Mahesh KC, Reddy TS, Rajesh K, Venkateswarlu Y. Lanthanum (III) nitrate hexahydrate or p-toluenesulfonic acid catalyzed one-pot synthesis of 4(3H)-quinazolinones under solventfree conditions. Tetrahedron. Lett. 2006; 47(26): 4381-4383.
11. Lin CC, Guo Y, Vela J. Microstructure Effects on the Water Oxidation Activity of $\mathrm{Co}_{3} \mathrm{O}_{4} /$ Porous Silica Nanocomposites. ACS Catal. 2015; 5(2): 51037-1044.
12. Zhou X, Shi J, Qin PH, Fan YF, Min JC, Yao YL, WF. Synthesis of $\mathrm{Co}_{3} \mathrm{O}_{4}$ /graphene composite catalysts through CTAB-assisted method for orange II degradation by activation of peroxymonosulfate. J. Mater. Sci. Mater. Electron. 2016; 27: 1020-1030.
13. Abdoli M, Nami N, Hossaini Z. One-Pot Synthesis of Spiro-Acridine/ Indoline and Indoline Derivatives Using (MWCNTs) - $\mathrm{COOH} / \mathrm{La}_{2} \mathrm{O}_{3}$ Hybrid as an Effective Catalyst. J. Heterocycl. Chem. 2020; 58(2): 523-33.
14. Aftab U, Tahira A, Gradone A, Morandi V, Abro MI, Baloch MM, Ibupoto ZH. Int. J. Hydrog. Energy. 2021; 46(13): 9110-9122.
15. Vinodha G, Shima PD, Cindrella L. Mesoporous Magnetite NanoparticleDecorated Graphene Oxide Nanosheets for Efficient Electrochemical Detection of Hydrazine. J. Mater. Sci. 2019; 54: 4073-88.
16. Tang B, Ge J, Wu C, Zhuo L, Niu J, Chen Z, Shi Z, Dong Y. SolSolvothermal Synthesis and Microwave Evolution of La $(\mathrm{OH})_{3}$ Nanorods to $\mathrm{La}_{2} \mathrm{O}_{3}$ nanorods. Nanotechnology. 2004; 15(9):1273-6.
17. Dai X, Virgil S. Synthesis of 2-heterosubstituted quinazolinone atropisomeric phosphine ligands by direct lithiation of a 2-unsubstituted quinazolinone system. Tetrahedron: Asymmetry. 1999; 10(1): 25-29.
18. Abbas SY, El-Bayouki KAM, Basyouni WM, Mostafa EA. New series of $4(3 \mathrm{H})$-quinazolinone derivatives: syntheses and evaluation of antitumor and antiviral activities. Med Chem Res. 2017; 27: 571-582.
19. Norouzi FH, Foroughifar N, Khajeh-Amiri A, Pasdar H. A novel superparamagnetic powerful guanidine-functionalized $\gamma-\mathrm{Fe}_{2} \mathrm{O}_{3}$ based sulfonic acid recyclable and efficient heterogeneous catalyst for microwave-assisted rapid synthesis of quinazolin-4(3H)-one derivatives in Green media. RSC Adv. 2021 Sep 7;11(48):29948-29959. doi: 10.1039/d1ra05560g. PMID: 35480261; PMCID: PMC9040894.
