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Introduction
In recent decades, micro- and nanotechnology (nano 

nucleation) have made substantial contributions to the 
signiϐicant progress in different ϐields, such as industries 
and the pharmaceutical and biomedical domains. Their 
advancement has led to the development of improved and 
new materials, tools, and devices, with various applications. 
Studies have generally become more interdisciplinary and 
complex. 

Surface energy is a fundamental physical parameter and 
plays an important role in a variety of scientiϐic and industrial 
ϐields. The aim of this review is to present the current state of 
inϐluence of the size-dependent surface tension in micro- and 
nanowire.

Surface tension is a fundamental thermodynamic 
parameter that signiϐicantly inϐluences the creation of micro- 
and nanowires. 

The chemical and physical properties of interphase 
boundaries in nanowires, as well as for nanoparticles, 
have been studied in a huge number of publications (see 
fundamental monographs [1–5] and literature [6–9]). We 
can single out the following theoretical approaches: Gibbs–
Tolman–Koenig–Buff equation method ends the linear and 
nonlinear Van der Waals theory.

The study aims at derivation and detailed analysis of 
expressions for the surface tension for the micro- and nanowire 
in thermodynamic equilibrium on the Gibbs–Tolman–Koenig–
Buff equation method and on the Van der Waals theory and 
others theory [9].

The given theory can ϐind application in micro- and 
nanowire production technology (Figures 1,2) 

Abstract 

The dependence on the surface energy is important for the description of the nucleation 
process of micro- or nanowires. Analytical solution to Gibbs–Tolman–Koenig–Buff  equation for 
micro- or nanowire surface is given. Analytical solutions to equations for the case of the cylindrical 
surface for the linear and nonlinear Van der Waals theory are analyzed.

a                                     b

Figure 1: a: Process of nanowires growth by the “vapor-liquid-crystal” mechanism. 
1. Drops zone 2. Cylindrical zone. b: Morphology of the particles produced during 
electrodeposition of Co–W [6]. 
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Figure 2: Functions graphs of solution (2).
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We presented a growth mechanism for whiskers “vapor-
liquid-crystal” (see [10]) and electrodeposition of Co–W [6].

As you can see from the ϐigures, we must study cylindrical 
and conical surfaces.

Modeling of surface energy for microwires in Gibbs–
Tolman–Konig–Buff `s theory

We will use the Gibbs – Tolman – Koenig – Buff differential 
equation [2–6] (for a cylinder) to describe the surface tensions, 
σi, of nanowires [1]:
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Where Ri is the radii of micro- and nanowires (the radius of 
its metallic kernel, Rm, or the total radius of glass, Rg). 

Non-negative parameters (Tolman length), δi, 
characterizing the thickness of the interfacial layer (for 
example, between glass and glass-metal). 

In surface thermodynamics, the Tolman length is used as 
a parameter that is equal to the distance between the surface 
of tension and the equimolar surface. The numerical values of 
the parameter of the analog 

“Tolman length” for micro and nanowire is in the range 
from 0.1 to 1 μm.

The integral in (1) (if δi =const.) can be exactly taken. The 
ϐinal result has the form [7,8]:
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The well-known Tolman formula (for cylinder) is in a 
special case R >> δ for this formula (2) 
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In case R << δ : 

( ) )0.645/ ~ /(R                         (3b)

We represent the Rusanov linear formula [5,11] for the 
cylindrical surface.

Modeling of surface energy for micro- and nanowires 
in linear Van der Waals theory

The basic equation of the linear Van der Waals theory of 
an inhomogeneous medium [6-8] can be written in the form:
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Where n (x) is the function when proportional to the 

volume density N(x) (x = r/δ, no=const.), r is the radial variable 
measured from the center of a nanoparticle δ, and is the 
Tolman length [1-3].

The general solution to Eq. (4) has the form

)/()/()( 002,1  rKBrIAnrn                                     (5)

Where 0 0( / ), ( / )I r K r  are modiϐication Bessel and 
Hankel functions?

(0) ( ) ,  ( )1 2n n R n n n                                         (6)

We will accept the volume density function, N(r/δ). We get: 

 ( ) (0) ( ) 1,  / ( ) 0N r Nn n R n                     (7)

Substituting solution (5) into expression (7) and 
integrating, we obtain:
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We will accept the volume density function, N(r/δ)(Figure 3). 

 ( ) (0) ( ) 1,  / ( ) 0N r Nn n R n       
     (8a)

Solution (8) can be used for calculating adsorption, which 
is deϐined as the excess number of atoms or molecules in the 
surface layer of the nanoparticle per unit area:
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(x = r/δ, x0 = R/δ)

Taking into account adsorption (9), we obtain the 
differential equation
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If х >> 1

Figure 3: Functions graphs of K0(x), and volume density function, N(r/δ).
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(See formula (2) and (3a));

And if x << 1
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Where   = 1,781 is Euler constant, we obtain
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This equation is integrated numerically.

Modeling of surface energy for micro- and nanowires 
in nonlinear theory

The nonlinear equation can be written in the form
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The simple volume density function, N, may be determined 
(Figure 4):

11
21 2 ln[1 ]N X                         (16)
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The results obtained have a physical meaning only as long 
as the function N1 is positive.

The resulting density proϐile (see Figure 5 and (16), (17)) is 
very different from the results of the linear theory (see Figure 
4 and (8)) and therefore the GTKB theory (see (2), (3a), (3b)).

Micro and nanowire will only be produced for a limited 
metallic kernel, Rm.

The long nanocylinder

We consider a case of the application theory [9] when 
nanoparticles have a long cylinder form. We used the 

cylindrical coordinate system for which the characteristic 
spin function [9] is presented by the angle function q(r) about 
the cylinder axis z. 

The free energy in this model has the following form [9]:
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Where θ(r) is the angle between the cylinder axis and the 
magnetization vector; r is the radial coordinate. 

The model kinetic energy in (17) is a classical analog of 
the exchange energy in the Heisenberg model for the two-
dimensional space at the continuum approximation [8] that in 
our case corresponds to the inϐinite cylinder model [9]. Then 
the kinetic energy in (17) coincides in form with the kinetic 
energy of the particle (in cylindrical coordinates). This fact 
is not casual as the model under consideration permits exact 
analytical solutions in the form of quasiparticles (nonlinear 
waves) which are called instantons (or skyrmions [9]). Please 
note that in our case these quasiparticles are not dynamic 
particles but topological compositions. Therefore, in our case, 
the virtual kinetic energy of the topological instanton is meant 
by the kinetic energy. 

We introduce a relative coordinate: 

 
c
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where Rc is the drop equilibrium radius. 

Then there is a condition of 0 ≤ρ≤ 1. The proposed 
continuum model of energy (17) actually appears as a 
Heisenberg model in which the interacting spins have the 
meaning of the energy states of the particles associated with 
the constant exchange interaction A (with the dimension for 
the exchange energy [J/m]). 

Using (17) it is simple to derive the Euler - Lagrange 
equation:
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 Figure 4: The function graph of solution (16) is presented.

a                                                        b
Figure 5: a. Diagrams of solution (25) at diff erent values of parameter a (see [9]). 
b. Diagrams of solution (25) at diff erent values of parameter α: 
1 – a=1; 2 – a=10; 3 – a=50; 4 – a=100.  (see [9])
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For simplicity it is sufϐicient to use only a particular 
solution of this equation describing the nucleation process 
under simple boundary conditions: 
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The solution to problems (19), (20) has a simple form:
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That is convenient for further analysis. 

Let us introduce the model surface energy in order to 
obtain the Euler - Lagrange equations for the scale-invariant 
theory as well: 
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Where a2 is the ratio of the anisotropy energy to the 

exchange interaction constant A. The parameter a2 is 
determined in [9]:
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With the determined anisotropy function (model as the 
Rapini modiϐied potential [9]):
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Where B is the positive energy quantity whose dimension 
coincides with A.

In agreement with the previous solution we assume that in 
(22) at B = 0, there is no anisotropy, and at B > 0 it occurs. The 
solution to equation (22) is as follows: 
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Please note that solutions (21) and (25) analytically join, 
therefore the indices are later omitted.

Let us consider one general solution (25). The diagram of 
this solution is presented in Figures 5a,b. 

It is easy to show that the function θ(r) at a = 1 and 0 ≤ρ≤ 
1has no point of inϐlection. This point appears only at a > 1. 
This means that the surface layer in our model can exist only 
at a > 1. In this case, some volume whose energy is the surface 
energy of the cylindrical particle can be chosen as a surface 
layer. For deϐiniteness, we suppose, for example, that the 
surface layer begins to manifest itself clearly from a value of 
a > 4. Thus, we suppose that if a = 1 there is no anisotropy in 
the system, and the Tolman length actually coincides with the 
drop sizes. If a >> 1, then in the proposed model the speciϐic 
anisotropy is more than the exchange interaction, and in the 
drop, there appears a parameter (the Tolman length) that 
characterizes the dimension of the interfacial region. 

Case a < 1 corresponds to the negative surface energy 
(in Figure 5a. This case is presented for a = 0.5), and it is not 
considered in detail in this paper as it is associated with the 
condensed phase instability. 

One can estimate the change in the free energy from 
the particle center to its surface. This allows the physical 
interpretation of the introduced parameters of the model and 
the comparison of them with traditional energy characteristics 
which are used to describe the nucleation process. 

Let us initially consider the layer--by--layer change in this 
free energy of a cylindrical drop. Let us return to the formula 
for the energy which we used to derive the equation of motion. 
It is as follows: E(r) = T + U. Taking into account solution (9) 
we ϐind that the kinetic energy is equal to the potential energy: 
T = U. This important result for the closed dynamic system is 
associated with the virial theorem for the ϐinite motion, and in 
our case, it is the test if this approach to the problem solution 
is correct. For the total full energy we have: 

2 2

2 2( ) 4
(1 )


 

 
      

a

a

aE T U A
                

 (26)
 

It follows from (26) that at a = 1 and r < 1, the equality E(r) 
= A is satisϐied. In the case when В > 0 the cylinder surface 
energy tends to Aa2 ~ B, and this limit is sharper the higher 
the quantity B. Thus, just this parameter B can be associated 
with the parameter of the speciϐic thermodynamic surface 
energy which occurs in the thermodynamic theories (of Gibbs, 
Tolman, etc.) on the understanding that the dimension of 
these energies is different. 

A sharp rise in free energy (see Figures 6a, b) depending 
on the parameter a is identiϐied with the phase transition 
which takes place in the system in the case of inϐinitely small 
anisotropy [9]. In order to determine the total energy of the 
particle assigned to the cylinder length unit an integral of 
E(r) over the cylinder volume must be taken. Let us begin 
with a qualitative analysis of the model. Please note that for a 
particular case of a = 1 and В = 0, this integral must be equal to 
A (with an accuracy to the multiplier). Then there is no other 
energy in the system; here A is the only internal model energy 

 

a                                                          b

Figure 6: a) Dependence of energy on parameters а and ρ (see [9]). b) Dependence of 
energy on parameters а and ρ (see [9]).
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of the system. In another limiting case, some high value of 
a is sufϐicient for the total energy to tend to the anisotropy 
energy B. In the general case, the total full speciϐic energy (for 
the cylinder length unit) will be as follows:

1 1 2 1
2

2 2
0 0

2 ( ) 8 2
(1 )
      





  
 

a

a

dW E d a A aA
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In the Cahn--Hillard theory [9,11,12] the activation barrier 
energy is in proportion to the geometric mean of two energy 
parameters: 

BAEc ~                     
(27a)

Unlike the proposed theory the Cahn-Hillard theory is 
not scale--invariant and the quantity B has a dimension of 
J/m3. In our case the integral formula derived from (11) for 
the activation energy has the same form, i. e., one may talk of 
the coincidence of these theories when calculating the mean 
activation energy (in the volume unit). Thus, we can deduce 
that the proposed theory coincides qualitatively with the 
Cahn - Hillard theory. In frame Cahn - Hillard theory we obtain 
the same analytic structures too [11,12] (Figure 7):

   0/ 2 exp /       cctg r                  (28) 

The special case of a long nanocylinder

The previously introduced parameter a2 (see (23)) 
can formally be less than a = 1 (in Figure 5a, this case is 
presented for a = 0.5). This case can correspond to negative 
anisotropy energy, which can, for example, prevent the 
creation of a nanoparticle. Technologically, it is possible to 
initiate the creation of a nanoparticle, but limit the growth of 
a nanoparticle.

Therefore, it is of interest to consider the case when:

B = - A                       (29) 

Such a physical situation can take place in the case when 
a nanoparticle nucleus with size ρ0 < 1 (for deϐiniteness 
ρ0 = 0,1) has already been created, but its development to 
an equilibrium state with ρ = 1 is hindered by the created 

(artiϐicially) anisotropy:

2

2sin


aA                      (30) 

We believe that this anisotropy manifests itself only 
starting from some sizes corresponding to the value

ρ0 = 0,1                       (31) 

 Then, for this case, the equation is linearized and greatly 
simpliϐied:

1 0                        (32) 

A particular solution for equation (32) can have the form 
(in our case, we use condition (32) to compare it with the 
solution in the form of the formula (25)):

0ln ( )c                         (33) 

Where 

0/ (2ln(1 ))c    , (for ρ > ρ0)

The function graph  0lnc   is shown in Figure 8.

a                                                    b
Figure 7: Schematics representations of the solution (25): (A), and (28): B) in the form 
of a domain wall of energy vectors.

Figure 8: Functions graphs of the solution (33).

Conclusion
The surface energy is a fundamental thermodynamic 

parameter, which is found in the work spent on the reversible 
isothermal formation of the interface. Surface energy plays an 
important role in a variety of scientiϐic and industrial ϐields. 
The symmetry of atomic or molecular interaction forces near 
the interface results in the tangential and normal components 
of these forces. Under the action of the force directed normally 
to the interface, particles are drawn into the volume of a 
denser phase. As a result, the tangential component acting on 
the particles remaining on the surface (this component tends 
to decrease the interfacial area and thereby is responsible for 
the surface tension) grows. The surface tension is, in essence, 
a measure of the excess free energy in the surface layer 
compared with the free energy in the volumes of coexisting 
phases

a) With the decrease of the condensed phase in size 
the proportion of surface atoms increases thus increasing 
the inϐluence of the interphase boundaries. At the same time, 
the size dependence of surface tension is determined by 
the Tolman length i.e. the actual thickness of the interfacial 
(transition) layer.
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b) If equations (2) (the Gibbs–Tolman–Koenig–Buff 
solution) can be compared with its linear analog (10) 
(see (12)), then the solution (16) is not reduced to linear 
analogs. The solution has a highly non-linear character. This 
nonlinearity cannot be described by perturbation theory, 
starting from a linear result. If the formation of nanoparticles 
is determined by nonlinear processes, then there is a suspicion 
of an incorrect description of it within the framework of the 
classical theory of nucleation.

c) At the end of the work there have been obtained the 
results associated with a special form of the van der Waals 
gradient theory which can be resumed in the following way. 
If in the formation of a nanoparticle, there is only one energy 
form that plays the role of the exchange interaction A then 
the additive separation of the system energy into the surface 
energy and the nanoparticle volume energy in the context of 
the proposed model is incorrect. However, in this case, one 
can introduce the average energy of the whole nanoparticle 
and, from simple geometric considerations, derive the 
Rusanov linear formula for the surface energy. Commonly, the 
Rusanov formula is assumed universally applicable. This fact 
is not conϐirmed when our model of the anisotropy energy is 
complicated. 

d) The concept of the anisotropy energy, introduced into 
the theory in the form of the proposed model as the Rapini 
modiϐied potential, leads to the appearance of the surface 
energy. Please note that in the conventional Rapini potential, 
there is no multiplier of the form 1/r2. The anisotropy energy 
can have the meaning of the double electric layer energy (in 
electrochemistry), besides, at the formation of very small 
equilibrium particles with the differentiated surface energy 
it should be increased the electric capacity of the micro- and 
nanocylinder where this nanoparticle is formed. So, one can 
suppose that the nano--nucleation process can be efϐiciently 
controlled.

e) The main ϐindings that unite all the parts of the 
work are the dependences of the surface energy on the 
thermodynamic parameters of the system which make it 
possible to expand in some ways the vision of the capillary 
phenomena in the micro- and nanocylinder. 

Despite the long history of the theory of interfacial 
phenomena, some of its important problems remain in 
dispute. In particular, this concerns the dependence of 
surface tension σ on interface curvature. This dependence 
is commonly referred to as the size dependence of surface 
tension. At present, there is no consensus on the character of 
this dependence even for the trivial case of a small spherical 
droplet. For example, in fundamental works [1-4], it is stated 
that the surface tension must decrease upon decreasing 
droplet radius. 

This conclusion is conϐirmed in this work.
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