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Introduction
The abundance of experimental data on the combustion 

characteristics of high-energetic materials (HEM) is evident 
in literature such as [1]. This work presents a substantial 
amount of experimental data on the burning rate and its 
pressure dependency, focusing on composite solid fuels 
comprising RDX, HMX, and AP as primary components, along 
with various additives like nanometal particles, metal oxides, 
metal salts, metal composites, organometallic compounds, 
energy nanocatalysts, and carbon nanomaterials. While the 
results are extensively documented in tables and graphs, the 
complexity of these presentations hinders in-depth analysis 
and fails to capture all underlying patterns. Many graphs 
exhibit non-monotonic and non-smooth characteristics, often 
containing signiϐicant random errors. Notably, a multifactor 
computational model that synthesizes the collected data and 
enables rapid calculation of burning rate values for diverse 
fuel compositions is absent in the work. 

The extensive experimental data on the effects of nano-
sized metal particles on the properties of solid rocket 
propellants are well-documented in literature such as [2]. 
This work delves into the impact of various types of nano-

sized metal particles, including nAl, nZr, nTi, and nNi, on 
solid rocket propellants compared to propellants containing 
micro-sized Al powder (mAl). The analysis primarily 
examines burning rate, pressure exponent, and hazardous 
properties to assess the suitability of these propellants for 
solid rocket motors. The results indicate that nano-sized 
additives play a signiϐicant role in inϐluencing combustion 
behavior, leading to increased burning rates and heightened 
impact and friction sensitivity when compared to propellants 
containing micro-sized particles. The text underscores the 
broad applications of metal nanoparticles in explosives and 
propulsion systems. Despite the valuable ϐindings presented, 
this study shares similar limitations with the previous work, 
including the complexity of data presentation and the absence 
of a comprehensive computational model for rapid analysis of 
propellant performance across different compositions.

In the study of [3], it is highlighted that predicting the 
burning rate response to pressure changes is a critical aspect 
in developing new solid propellants. The authors emphasize 
the importance of being able to forecast this behavior early 
in the formulation process to streamline experimental 
studies. While various theoretical models exist to explain 
combustion in energetic materials, there is a lack of publicly 
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available research on utilizing machine learning models 
for predicting solid propellant burning rates. To bridge 
this gap, the researchers have gathered data on material 
formulations and burning rate parameters from a wide range 
of propellant formulations to create a comprehensive dataset. 
By utilizing this dataset, they have trained a random forest 
machine learning model to predict burning rate parameters 
for different types of solid propellants, including composite 
ammonium perchlorate, plastic-bonded high explosive, and 
double-base propellants. The study thoroughly evaluates 
the accuracy, adaptability, and predictive capabilities of the 
model. Additionally, the researchers investigate how different 
materials impact the expected burning rate of a propellant, 
shedding light on the inϐluence of material composition on 
performance outcomes. This innovative approach combines 
data-driven insights with machine learning techniques to 
improve understanding of solid propellant behavior and 
optimize formulation processes. Artiϐicial neural networks 
(ANN) are not employed in this study [3].

There is a lack of generalized multifactor models for 
forecasting the impact of various factors on combustion 
characteristics, both in direct and inverse problems. Currently, 
researchers rely on costly and hazardous experiments to 
gather burning rate data or determine optimal compositions 
for high-energy materials (HEMs). 

To address this issue, multifactor computational models 
(MCM) utilizing artiϐicial intelligence methods are proposed 
as a solution. In our study, we introduce MCMs that leverage 
neural networks to predict properties of unexplored materials 
and simulate virtual experiments. Speciϐically, we focus 
on using artiϐicial neural networks (ANN) to create MCMs 
for predicting burning rates of composite, fuel-rich, and 
composite-modiϐied double base (CMDB) propellants with 
metal additives. 

This innovative approach aligns with the emerging ϐield 
of “High-Energetic Materials Genome,” offering signiϐicant 
advancements in propellant development.

High-Energy Materials Genome (HEMG)

The creation of the “High-Energetic Materials Genome” 
(HEMG) is a new direction of research in the ϐield of 
combustion. The research is based on the close interaction of 
experimental, theoretical, and computational methods. The 
relevance of the research is associated with the need to solve 
a complex of large-scale scientiϐic and technical problems in 
the development of new HEM, as well as related economic, 
explosion safety, and environmental problems.

The authors understand the HEMG as a set of MCM 
containing relationships between all variables of the HEM 
combustion process allowing determining the composition 
of the HEM and the technology of its manufacture, providing 
the required burning rate, and parameters of the combustion 

law at a predetermined range of pressures. In the general 
classiϐication of tasks, this one is the inverse problem.

HEMG is based on experimental data on the burning rate of 
various HEMs under various conditions, as well as metadata 
on the quantum, physicochemical, and thermodynamic 
characteristics of HEM and HEM’s components as a whole. The 
latter is very important (critical) for the creation of HEMG. 
The use of metadata reϐlecting the physical and chemical 
characteristics of HEM components, and structural aspects 
of HEM’s molecules will make it possible to understand the 
physicochemical nature of the relationships of combustion. 
The HEMG also includes MCM that makes it possible to 
determine, based on data on the HEM composition, metadata, 
pressure, and initial temperature, such characteristics 
as burning rate, parameters of the combustion law, and 
temperature sensitivity of the burning rate. 

These models for solving direct problems also allow us to 
solve the inverse problems by enumerating the values (set 
of values) of the input factors (the composition of the HEMs, 
pressure, and initial temperature).

These models will also be able to solve a very important 
problem - to generalize the patterns of combustion of a wide 
variety of HEMs at a fundamentally new level. Through the use 
of metadata, they will be able to reveal the subtle mechanisms 
of combustion.

The creation of the HEMG has to be considered as a way 
for an accelerated development of innovative high energetic 
materials.

The HEMG is like the Materials Genome Initiative for Global 
Competitiveness that was announced through a whitepaper 
by the National Science and Technology Council of the U.S.A. 
in June 2011 [4].

Of late, the materials genome approach has been applied in 
new material discoveries successfully. 

Wang et al. in their work [5] show how a materials genome 
approach can be used to accelerate the discovery of new 
insensitive high-energetic explosives by identiϐication of 
“genetic” features. 

From the point of view of the global project “Materials 
Genome Initiative”, which the Strategic Plan was presented 
in 2014, the following main scientiϐic provisions and 
achievements should be noted in [6]:

1. Close interaction of experimental, theoretical and 
computational methods. 

2. Use of metadata reϐlecting the physicochemical and 
thermodynamic characteristics of components and 
constituent materials 

3. Great achievements have been noted in the development 
of a wide variety of materials in a wide variety of ϐields. 
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There are many scientiϐic organizations intensively 
developing fundamental and applied research within the 
framework of the “Materials Genome Initiative” project. 
Examples of the development of new materials in various 
scientiϐic areas in the framework of the “Materials Genome 
Initiative” are presented in a few works [7-11]. 

Issues such as the possibility of accelerating the 
development of materials for energy storage and conversion, 
a genomic approach to the creation of new energy materials, 
and predicting the crystal density of energy materials are 
discussed in the work [12-14].

The study [15] used machine learning (ML) techniques to 
derive models to predict thermal decomposition temperatures 
and study the factors that correlate with the thermal stability 
of energetic materials (EMs). Simulations were performed 
on a data set of 885 different compounds using linear and 
nonlinear algorithms. The models demonstrated acceptable 
predictive abilities.

Examples of using deep learning neural networks to design 
molecules of high-energy materials are given in [16]. High-
precision quantum mechanical calculations conϐirmed that 
the 35 newly designed molecules have a higher detonation 
rate than the classical explosive RDX, as well as good thermal 
stability.

This work [17] presents the results of predicting the 
sensitive properties of HEM and studying their decomposition 
processes. Due to the hazards associated with the synthesis of 
energetic materials, HEM sensitivity prediction models are of 
great importance to ensure the safe and efϐicient development 
of new HEMs using machine learning algorithms.

In the work [18] Results of the application of deep learning 
neural networks to determine the detonation efϐiciency of 
energetic materials and advances in accurate and extremely 
fast prediction of the detonation characteristics of energetic 
molecules are presented. These models can be integrated 
into larger projects for high-throughput virtual screening, 
molecular optimization, or experimental molecular selection 
before actual synthesis. The machine learning process uses 
a reference dataset created from quantum mechanical 
calculations and the Cheetah thermochemical code.

These works describe recent advances in predicting the 
properties of energetic compounds using machine learning, as 
well as general steps in applying machine learning to predict 
practical chemical properties and promising directions for 
applying machine learning. It is noted that machine learning 
may soon become a “new force” in the development of new 
energy materials.

Overall, an analysis of these papers [3-18] shows that 
machine learning may soon become a “new force” in the 
development of new energy materials. 

However, machine learning methods, in particular neural 
networks, have not been used to predict the burning rate and 
its dependence on pressure. Descriptions of the possibilities 
of using neural networks are available only in the works of the 
authors of this paper.

Results and discussions
Formulations

The base set of burning rate data was taken from the 
papers [19-21].

The set consists of data about the combustion of RDX-
CMDB and CL-20-CMDB propellants with different nano 
powders and contents: 

-   73.5% NG/NC + 19.5% burning rate inhibitor + 4.0% 
catalyst + 3.0% additives with and without nAl; 

-     63.0% NG/NC + 2.3% catalyst + 2.8% additives + 26%
 RDX + 4.6% diethyl phthalate (DEP) + 2.6% (nAl+Al2O3) 
with and without nAlN;

-    63.4% NG/NC + 5.85% + 4.75% additives + 24% HMX 
with and without nDPN; 

-  CL-20-CMDB propellants formulation with different 
mass fractions of nNi;

-     RDX-CMDB propellants with different nNi contents.

Modeling

All data were summarized. The common table consisting 
of 137 rows is presented in Supplementary materials. The 
table was used to create an MCM capable of solving direct 
and inverse problems (tasks) as well as executing virtual 
experiments. 

The MCM was obtained using ANN including in the 
analytical platform Loginom. 

The MCM is presented in Supplementary Materials as 
an autonomous executable module with instructions for 
use. Everyone can try to use it and check our results. This 
publication can be considered as a new type of publication: 
model paper. This type is convenient for publishing the results 
of applying artiϐicial intelligence methods. In our case, this 
publication allows the reader to study all the dependencies 
between the experimental variables, and not just those 
presented by the authors of the work in the article or abstract, 
as well as conduct independent virtual experiments.

Several screenshots of the operation of the autonomous 
executable module are also presented in Supplementary 
Materials.

To develop the ANN models, we used simple feed-forward 
neural networks with a single hidden layer. Our experience 
shows that the accuracy of networks with a single hidden 
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layer is often quite good for problems in physics and natural 
sciences where dependencies are deterministic. Since we used 
data tables from scientiϐic articles, they did not require any 
preprocessing or data cleaning. Standard methods were used 
for data normalization and encoding categorical variables. 
The selection of the ANN structure was based on the principle 
that the number of computational paths in the ANN should 
be less than the number of examples (rows in the table). For 
investigating deterministic processes, this requirement is 
sufϐicient. Standard settings of the analytical platform we used 
were employed for choosing training parameters. A sigmoid 
activation function was used, and the learning rate was set to 
0.1. The training was stopped when the mean squared error 
stopped decreasing. The analytical platform we used shows 
real-time graphs of the decrease in training and testing mean 
squared error.

The fundamentals of ANN and the examples of using ANN 
for modeling experimental data are presented and described 
by the authors in a few works [22-28]. 

Direct task

The creation of the MCM solves a direct problem, that is, 
revealing the dependence of the burning rate (goal function of 
models) on the very various factors. ANN structure for solving 
the direct problem consists of one input layer (17 neurons 
which correspond to 17 factors), one hidden (inner) layer (5 
neurons), and one output layer (1 neuron which corresponds 
to 1 goal function). This computational structure, after training 
on the experimental data, allows for the determination (to 
calculate) of the burning rate value for any set of values of the 
incorporated factors. The advantage of the analytical platform 
Loginom is the automatic execution of quality assessments 
of the ANN structure obtained. A portion (95%) of the full 
data set was randomly selected and used for training, and the 
remaining data (5%) was used for model testing only. Both 
the testing and training procedures run simultaneously. The 
quality assessments of the ANN model obtained depict that the 
root-mean-square error of the ANN model training procedure 
equals 3.4×10-4 for 78% of the training data set and the root-
mean-square error of the ANN model testing equals 5.1×10-4 
for 71% of testing data set. The coefϐicient of determination 
was determined; its value was more than 0.99. 

It is important to note that the root-mean-square error of 
the testing procedure on the data that have not been used for 
training is about equal to the root-mean-square error of the 
training procedure. This observation conϐirms the over ϐitting 
of ANN is not present.

An example of a calculation of the ANN MCM that solves a 
direct problem is depicted in Figure 1.

The ANN MCM (calculator) that solves the direct problem 
contains all the links between the goal function of the model - 
the burning rate and 17 factors. It can instantly give the value 

of the burning rate for any set of factor values and present 
graphs of the burning rate versus any factor, not just pressure! 
We have presented a large number of such results at: https://
www.researchgate.net/proϐile/V-Abrukov - preprint section.

Inverse problem (task)

One possible ANN structure for solving the inverse problem 
consists of one input layer (17 neurons which correspond to 
16 factors and 1 goal function – burning rate which we have to 
obtain), one hidden (inner) layer (5 neurons), and one output 
layer (1 neuron which corresponds 1 factor – pressure which 
has to help us to rich the required value of burning rate). This 
computational structure, after training on the experimental 
data, allows for the determination (to calculate) of the 
pressure value which helps us to reach the required value of 
burning rate for any set of values of the incorporated factors. 

The quality assessments of the ANN model obtained depict 
that the root-mean-square error of the ANN model training 
procedure equals 1.7×10-2 for 86% of the training data set and 
the root-mean-square error of the ANN model testing equals 
7.3×10-3 for 43% and 1.4×10-2 for 29% of testing data set. 

The root-mean-square error of the model for solving the 
inverse problem is greater than that of the model for solving 
the direct problem. The reason may be due to the fact that 
inverse problems solved on the basis of experimental data 
are incorrectly (ill-posed) set according to Hadamard from 
the point of view of pure mathematics. If the requirement for 
the existence of a solution and the stability of the solution 
to errors in the input data is satisϐied in the case of using an 
ANN, then the requirement for the uniqueness of the solution 

Figure 1: An example of a calculation of the ANN MCM that solves a direct problem.
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cannot be fully met. First of all, this is due to the signiϐicant 
multifactor nature of the problem of determining the pressure 
that provides one or another burning rate, since the same 
burning rate can be obtained both due to a change in pressure 
(with a constant propellant composition), and due to the 
composition of the propellant (at a constant pressure).

Therefore, when solving this kind of inverse problem, it is 
better to use an ANN only as a calculator. You can set speciϐic 
values of the factors and the required value of the burning rate, 
after which the ANN will calculate the pressure required to 
obtain the required burning rate. It is better not to use graphs. 

An example of using the ANN MCM that solves an inverse 
problem is depicted in Figure 2. 

The ANN MCM (calculator) that solves the inverse problem 
allows for solving various problems related to determining 
the composition of HEM and pressure to obtain the required 
burning rate. We have presented a number of such results 
in a few works: https://www.researchgate.net/proϐile/V-
Abrukov - preprint section.

Virtual experiments

The ANN model for solving the direct problem allows for 
virtual experiments. The essence of the virtual experiment was 
as follows. The general table (137 rows) was slightly changed, 
the numerical values   of some factors with categorical values   
(yes, no) were replaced and the model (created a new model 
with the same ANN structure) was retrained. In this new 
model, the propellant composition, indicating the presence 
(yes) or absence (no) of a particular powder component, can 
be changed virtually. The result of the virtual experiment is 
depicted in Figure 3. 

The above is an example of a screen of ANN MCM solving 
a direct problem for a propellant for which real experiments 
were carried out. On the bottom is an example of a screen 
of ANN MCM performing a virtual experiment for a virtually 
changed propellant composition. 

We have included such components as DEP, nDPN, and Al in 
the propellant composition simultaneously (this composition 
was not really studied in the experiment). The model instantly 
calculated the value of the burning rate for the new propellant 
composition. 

Two circumstances that are characteristic of all 
obtained models should be noted:

1. Our experience shows that the root mean square (RMS) 
error of the ANN model of the direct problem is always less 
than the root mean square error of the experimental data 
used to create the ANN model. The high “smoothing” abilities 
of the ANN in approximating experimental data and revealing 
hidden patterns in the data, in some cases, allow us to assert 
that the ANN calculations better reϐlect the real dependences 
of the experiment (it “thinks out” the real dependences better 
than the experimenter). This is evidenced by a comparison of 
graphs obtained based on real experimental data, and graphs 
obtained based on calculations of ANN models. The latter are 
more “smooth”.

2. Our experience shows that the obtained models for 
solving the direct problem are capable of not only generalizing 
the dependences of the burning rate on various factors within 
the training set of experimental data (interpolation) but also 
extrapolating beyond the limits of the training set. Therefore, 
virtual experiments can be carried out to extrapolate the 
dependencies revealed by the ANN model that is, to solve 
forecast problems, for example, determining the burning rate 
for pressures that are signiϐicantly higher than the pressures 
for which the experiments were carried out.

The virtual experiments are a very promising way for 
the development of new advanced solid propellants in the 
framework of the “High-Energetic Material Genome”.

Conclusion
The results of the usage of artiϐicial neural networks 

(ANN), for the creation of new MCM of the propellants 
combustion that solve the direct and inverse tasks as well 
execute the virtual experiments are presented. Analysis of the 
results obtained depicts that ANN MCM has wide possibilities 
for propellant combustion research and development of new 
kinds of advanced propellants.

1. The results presented in the paper (ϐigures and graphs) 
depict no more than 1% of the propellant composition 
combustion patterns contained in the obtained MCMs. 

2. The complex of the developed models in the form of Figure 2: An example of calculation of the ANN MCM that solves an inverse problem.
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an autonomous computer module can be presented by the 
authors at the request of the readers and provided with 
detailed instructions for conducting their own study to 
visualize the effects of the propellant composition on the 
burning rate and to conduct virtual experiments. 
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