Research Article

Biodegradation of waste streams containing benzene, toluene, ethylbenzene and xylene (BTEX): Practical implications and brief perspectives

Srishti Singh*

Published: 12 June, 2019 | Volume 3 - Issue 1 | Pages: 007-010

Benzene (B), toluene (T), ethylbenzene (E) and xylene (X), collectively named as BTEX are mono-aromatic ring compounds with a 6-carbon benzene ring. Due to the presence of the aromatic ring, these compounds, especially benzene, are generally considered to be non-reactive species [1]. 

Read Full Article HTML DOI: 10.29328/journal.aac.1001018 Cite this Article Read Full Article PDF


  1. Bunnett JF, Draper F Jr, Ryason PR, Noble P Jr, Tonkyn RG, et al. Comparative activation of nucleophilic substitution in 4-substituted-2-nitrochlorobenzenes. J Am Chem Soc. 1953; 75: 642-645. Ref.: http://bit.ly/2R5LbvY
  2. Anderson MA. Removal of MTBE and other organic contaminants from water by sorption to high silica zeolites. Environ Sci Technol. 2000; 34: 725-727. Ref.: http://bit.ly/2WzA6cI
  3. Su F, Lu C, Johnston KR, Hu S. Kinetics, thermodynamics, and regeneration of BTEX adsorption in aqueous solutions via NaOCl-oxidized carbon nanotubes. Environanotechnology. 2010; 71-97. Ref.: http://bit.ly/2Zk9HfW
  4. Borden RC, Daniel RA, LeBrun LE, Davis CW. Intrinsic biodegradation of MTBE and BTEX in a gasoline‐contaminated aquifer. Water Resources Research. 1997; 33: 1105-1115. Ref.: http://bit.ly/2Wxogj4
  5. Cozzarelli IM, Bekins BA, Baedecker MJ, Aiken GR, Eganhouse RP, et al. Progression of natural attenuation processes at a crude-oil spill site: I. Geochemical evolution of the plume. J Contam Hydrol. 2001; 53: 369-385. Ref.: http://bit.ly/2KHCTte
  6. Dutta C, Som D, Chatterjee A, Mukherjee AK, Jana TK, et al. Mixing ratios of carbonyls and BTEX in ambient air of Kolkata, India and their associated health risk. Environ Monit Assess. 2009; 148: 97-107. Ref.: http://bit.ly/2X3guwP
  7. Mitra S, Roy P. BTEX: A serious ground-water contaminant. Res J Environ Sci. 2011; 5: 394-398. Ref.: http://bit.ly/2wMQDdP
  8. El-Naas MH, Acio JA, El Telib AE. Aerobic biodegradation of BTEX: progresses and prospects. J Environ Che Eng. 2014; 2: 1104-1122. Ref.: http://bit.ly/2XFSg98
  9. Bekins BA, Cozzarelli IM, Godsy EM, Warren E, Essaid HI, et al. Progression of natural attenuation processes at a crude oil spill site: II. Controls on spatial distribution of microbial populations. J Contam Hydrol. 2001; 53: 387-406. Ref.: http://bit.ly/2MCvmhK
  10. Yadav JS, Reddy CA. Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol. 1993; 59: 756-762. Ref.: http://bit.ly/2KIP2y2
  11. Jo MS, Rene ER, Kim SH, Park HS. An analysis of synergistic and antagonistic behavior during BTEX removal in batch system using response surface methodology. J Hazard Mater. 2008; 152: 1276-1284. Ref.: http://bit.ly/2WylwSC
  12. Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, et al. Long-term ecosystem response to the Exxon Valdez oil spill. Science. 2003; 302: 2082-2086. Ref.: http://bit.ly/2I8FzOz
  13. Atlas RM. Petroleum biodegradation and oil spill bioremediation. Marine Pollution Bulletin. 1995; 31: 178-182. Ref.: http://bit.ly/2X2oIFy
  14. Díaz MP, Boyd KG, Grigson SJ, Burgess JG. Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD‐M, immobilized onto polypropylene fibers. Biotechnol Bioeng. 2002; 79: 145-153. Ref.: http://bit.ly/2MFdAub
  15. Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, et al. Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Separation and Purification Technology. 2009; 68: 312-319. Ref.: http://bit.ly/2XGPWyK
  16. Nakano Y, Takeshita K, Tsutsumi T. Adsorption mechanism of hexavalent chromium by redox within condensed-tannin gel. Water Res. 2001; 35: 496-500. Ref.: http://bit.ly/2WvDLmG
  17. Bacelo HA, Santos SC, Botelho CM. Tannin-based biosorbents for environmental applications - a review. Chem Eng J. 2016; 303: 575-587. Ref.: http://bit.ly/2MFe03J
  18. El Sissi HI, Saleh NAM, El Sherbeiny AEA, El Ansary MAI. Local plants as potential sources of tannins and the isolation of their free and combined sugars. Qualitas Plantarum et Materiae Vegetabiles. 1965; 12: 262-268. Ref.: http://bit.ly/2Iz3lm5
  19. Harms H, Schlosser D, Wick LY. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol. 2011; 9: 177-192. Ref.: http://bit.ly/2Ixxsdv
  20. Pan B, Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol. 2008; 42: 9005-9013. Ref.: http://bit.ly/2MEZg4Q
  21. Mareddy AR, Shah A, Davergave N. Environmental impact assessment: theory and practice, Butterworth-Heinemann, Oxford, United Kingdom. 2017; Ref.: http://bit.ly/2I7VmNN

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More