Research Article

A validated method for coumarin quantification in Meliloti herba and its ethanolic extracts using micellar thin-layer chromatography

Aleksey G Verushkin, Artem Yu Kulikov* and Andranik A Kutsanyan

Published: 12 October, 2021 | Volume 5 - Issue 1 | Pages: 013-018

A micellar thin-layer chromatography method for the quantitative determination and validation of coumarin in Meliloti herba and its ethanolic extracts was developed and validated. For achieving good determination, the mobile phase of 5 x 10-4 mol/L Tween-80 in a mixture propanol-2 – water (5:95 v/v) was used. Densitometric determination was carried out at 275 nm. The calibration curve was linear in the range of 0.1-2.5 μg per band. The proposed method is simple, rapid, precise and accurate; replacing hazardous solvents by greener ones correspond to the modern requirements in “Green chemistry” concepts. The obtained data can be used for the routine analysis of coumarin in medical plant and extracts. 

Read Full Article HTML DOI: 10.29328/journal.aac.1001024 Cite this Article Read Full Article PDF


Coumarin; Micellar thin-layer chromatography; Meliloti herba; Validation


  1. Bruneton J. Pharmacognosie. Phytochimie, Plantes médicinales. 4e éd., EM Inter / Lavoisier Tec & Doc, Paris. 2009; 1-270.
  2. Luca SV, Głowniak K, Skalicka-Woźniak K. Coumarins: Analytical and Preparative Techniques. In Encyclopedia of Analytical Chemistry, Online ©2006-2018 John Wiley & Sons, Ltd. 2018.
  3. Glowniak K, Widelski J. Coumarins: TLC Analysis. In: Encyclopedia of Chromatography, Third Edition. Jack Cazes Ed., CRC Press 2009; 2850.
  4. Waksmundzka-Hajnos M, Hawrył M. Application of TLC in the Isolation and Analysis of Coumarins. In: Thin Layer Chromatography in Phytochemistry. Eds: Waksmundzka-Hajnos M, Sherma J, Kowalska T, CRC Press 2020; 896.
  5. Lozhkin AV, Sakanyan EI. Natural coumarins: Methods of isolation and analysis. Pharm Chem J.2006; 40; 337–346.
  6. Ananthakrishnan R, Chandra P, Kumar B, Rameshkumar KB. Quantification of coumarin and related phenolics in cinnamon samples from south India using UHPLC-ESI-QqQLIT-MS/MS method. Int. J Food Propert. 2018; 21: 50-57.
  7. Zheng Y, Xu X, Yuan F, Yao M, Ji S, et al. Simultaneous Analysis of Simple Coumarins and Furocoumarines in Cigarettes by Solid-Phase Extraction with Gas Chromatography-Mass Spectrometry. J AOAC Int. 2017; 100: 1559–1564. PubMed: https://pubmed.ncbi.nlm.nih.gov/28425389/
  8. Maggi F, Barboni L, Caprioli G, Papa F, Ricciutelli M, Sagratini G, Vittori S. HPLC quantification of coumarin in bastard balm (Melittis melissophyllum Lamiaceae). Fitoterapia. 2011; 82; 1215–1221. PubMed: https://pubmed.ncbi.nlm.nih.gov/21907267/
  9. Wang S, Tang F, Yue Y, Yao X, Wei Q, et al. Simultaneous Determination of 12 Coumarins in Bamboo Leaves by HPLC. J AOAC Int. 2013; 96; 942–946. PubMed: https://pubmed.ncbi.nlm.nih.gov/24282929/
  10. Hrobonová K, Lehotay J, Cižmárik J, Sádecká J. Comparison HPLC and fluorescence spectrometry methods for determination of coumarin derivatives in propolis. J Liq Chromatogr Relat Technol. 2013; 36: 486–503.
  11. Bieganowska M, Petruczynik A, Zobel A. Retention parameters of coumarins and flavonoids in binary reversed-phase HPTLC systems. J Planar Chromatogr. 1996; 9: 273-279.
  12. Glowniak K, Bieganowska M. Reversed-phase systems for the separation of coumarins and furocoumarins by Thin-Layer and High-Performance Liquid Chromatography. J Liq Chromatogr. 1985; 8: 2927-2947.
  13. Hawrył M, Soczewiński E, Dzido T. Separation of coumarins from Archangelica officinalis in high-performance liquid chromatography and thin-layer chromatography systems. J Chromatogr A. 2000; 886: 75-81. PubMed: https://pubmed.ncbi.nlm.nih.gov/10950277/
  14. Krüger S, Winheim L, Morlock GE. Planar chromatographic screening and quantification of coumarin in food, confirmed by mass spectrometry. Food Chem. 2018; 239: 1182–1191. PubMed: https://pubmed.ncbi.nlm.nih.gov/28873538/
  15. Pascual ME, Carretero ME, Slowing KV, Villar A. Simplified Screening by TLC of Plant Drugs. Pharmaceuti Biol. 2002; 40: 139-143.
  16. Lončar M, Jakovljević M, Šubarić D, Pavlić M, Buzjak Služek V, et al. Coumarins in Food and Methods of Their Determination. Foods. 2020; 9: 645. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278589/
  17. Anastas PT, Warner JC Eds. Green Chemistry: Theory and Practice. Oxford University Press, 1998; 135.
  18. Armstrong DW, McNeely M. Use of Micelles in the TLC Separation of Polynuclear Aromatic Compounds and Amino Acids. Anal Lett. 1979; 12: 1285–1291.
  19. Sherma J, Sleckman BP, Armstrong DW. Chromatography of Amino Acids on Reversed Phase Thin Layer Plates. J Liq Chromatogr. 1983; 6: 95-108.
  20. Repina N, Konovalova O, Kalinin D, Edamenko D. Thin-layer chromatographic separation of a number of bile acids with mobile phases based on surfactants. J Planar Chromatogr Modern TLC. 2020; 33: 271–279.
  21. Kulikov AYu, Renkevich AYu, Boichenko AP. Development and Validation of Assay and Stability-Indicating of gamma-Aminobutyric Acid in Tablets by Micellar Thin-Layer Chromatography. Methods Objects Chem Anal. 2015; 10: 73-79.
  22. Ciura K, Belka M, Kawczak P, Bączek T, Nowakowska J. The comparative study of micellar TLC and RP-TLC as potential tools for lipophilicity assessment based on QSRR approach. J Pharm Biomed Anal. 2018; 149: 70–79. PubMed: https://pubmed.ncbi.nlm.nih.gov/29101818/
  23. Shtykov SN, Sumina EG, Uglanova VZ, Sorokina ON. Thin-layer chromatography of some amino acids on silica in aqueous–organic and modified micellar mobile phases. J Anal Chem. 2017; 72: 870–878.
  24. European pharmacopoeia 10th PubMed: https://pheur.edqm.eu/home
  25. Popova TP, Litvinenko VI. Nekotorye obshhie zakonomernosti izvlechenija dejstvujushhih veshhestv iz lekarstvennogo syr’ja. Soobshh. 1. // Farmakom (Rus). 1993; 1: 13–15.
  26. Popova TP, Ammosov AS, Litvinenko VI, Mishev VM. Fil’tracionnaja jekstrakcija i ee apparaturnoe oformlenie. Farmakom (Rus). 1994; 2–3: 43–49.
  27. Validation of Analytical procedures: Text and Methodology Q2 (R1). http://www.ich.org
  28. Ermer J, Ploss HJ. Validation in pharmaceutical analysis: Part II: central importance of precision to establish acceptance criteria and for verifying and improving the quality of analytical data. J Pharm Biomed Anal. 2005; 37: 859-870. PubMed: https://pubmed.ncbi.nlm.nih.gov/15862659/
  29. Shewiyo DH, Kaale E, Risha PG, Dejaegher B, De Beer J, et al. Accuracy profiles assessing the validity for routine use of high-performance thin-layer chromatographic assays for drug formulations. J Chromatogr A. 2013; 1293: 159-169. PubMed: https://pubmed.ncbi.nlm.nih.gov/23639129/
  30. Shewiyo DH, Kaale E, Risha PG, Dejaegher B, De Beer J, et al.HPTLC methods to assay active ingredients in pharmaceutical formulations: A review of the method development and validation steps. J Pharm Biomed Anal. 2012; 66: 11-23. PubMed: https://pubmed.ncbi.nlm.nih.gov/22494517/
  31. Renger B, Végh Z, Ferenczi-Fodor K. Validation of thin layer and high performance thin layer chromatographic methods. J Chromatogr A. 2011; 1218: 2712–2721. PubMed: https://pubmed.ncbi.nlm.nih.gov/21329932/ 


Figure 1

Figure 1

Figure 1

Figure 2

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More