Abstract

Research Article

Treatment of antibiotic-resistant bacteria by nanoparticles: Current approaches and prospects

Tigabu Bekele* and Getachew Alamnie

Published: 08 June, 2022 | Volume 6 - Issue 1 | Pages: 001-009

Antibiotic-resistant bacteria are emerging pathogens whose resistance profiles generate a serious health crisis by holding their impact on human health. Misuse of antibiotics has directed the emergence of microbes immune to presently accessible drugs. Pathogenic bacteria become resistant by employing various mechanisms, such as; antibiotic modification, target site alteration, and biofilm formation, increasing the time they spend in the intracellular environment where antibiotics are unable to succeed at therapeutic levels. Due to this, attempts are being made to develop new alternative nanoantibiotics as a promising approach to treat multidrug resistance disease-causing bacteria. Accordingly, there is considerable contemporary attention to the use of nanoparticles (NPs) as antibacterial agents against different pathogens and as target drug delivery toward specific tissues therefore microbes are eliminated by the biocidal properties of nanoantibiotics. Additionally, the utilization of nanoencapsulation systems can help to beat the issues of, those with toxicity natures, and target drug delivery problems. This review encompasses the antibiotic resistance prevalence, mechanisms, and therefore the use of nanoparticles as antibacterial and drug delivery systems to overcome the antibiotic resistance challenges of bacteria. Overall, this review paper provides a conceptual framework for understanding the complexity of the matter of emergence of antibiotic resistance bacteria even for brand spanking new synthesized antibiotics. Therefore the availability of such knowledge will allow researchers to supply detailed studies about the applications of nanoparticles in the treatment of multidrug-resistant bacteria. 

Read Full Article HTML DOI: 10.29328/journal.aac.1001025 Cite this Article Read Full Article PDF

Keywords:

Antibiotic resistance; Horizontal gene transfer; Nanoencapsulation; Nanoparticles

References

  1. Lu J, Wang Y, Jin M, Yuan Z, Bond P, Guo J. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. Water Res. 2020 Feb 1;169:115229. doi: 10.1016/j.watres.2019.115229. Epub 2019 Oct 25. PMID: 31783256.
  2. Nguyen BT, Chen QL, He JZ, Hu HW. Microbial regulation of natural antibiotic resistance: Understanding the protist-bacteria interactions for evolution of soil resistome. Sci Total Environ. 2020 Feb 25;705:135882. doi: 10.1016/j.scitotenv.2019.135882. Epub 2019 Dec 2. PMID: 31818598.
  3. Osman M, Al Mir H, Rafei R, Dabboussi F, Madec JY, Haenni M, Hamze M. Epidemiology of antimicrobial resistance in Lebanese extra-hospital settings: An overview. J Glob Antimicrob Resist. 2019 Jun;17:123-129. doi: 10.1016/j.jgar.2018.11.019. Epub 2018 Dec 12. PMID: 30553113.
  4. Kabra R, Chauhan N, Kumar A, Ingale P, Singh S. Efflux pumps and antimicrobial resistance: Paradoxical components in systems genomics. Prog Biophys Mol Biol. 2019 Jan;141:15-24. doi: 10.1016/j.pbiomolbio.2018.07.008. Epub 2018 Jul 18. PMID: 30031023; PMCID: PMC7173168.
  5. Singh R, Smitha MS, Singh SP. The role of nanotechnology in combating multi-drug resistant bacteria. J Nanosci Nanotechnol. 2014 Jul;14(7):4745-56. doi: 10.1166/jnn.2014.9527. PMID: 24757944.
  6. Möhler JS, Sim W, Blaskovich MAT, Cooper MA, Ziora ZM. Silver bullets: A new lustre on an old antimicrobial agent. Biotechnol Adv. 2018 Sep-Oct;36(5):1391-1411. doi: 10.1016/j.biotechadv.2018.05.004. Epub 2018 May 27. PMID: 29847770.
  7. Chen H, Chen R, Jing L, Bai X, Teng Y. A metagenomic analysis framework for characterization of antibiotic resistomes in river environment: Application to an urban river in Beijing. Environ Pollut. 2019 Feb;245:398-407. doi: 10.1016/j.envpol.2018.11.024. Epub 2018 Nov 12. PMID: 30453138.
  8. Dong P, Wang H, Fanga T, Wang Y, Yea Q. Assessment of extracellular antibiotic resistance genes (eARGs) in typical environmental samples and the transforming ability of environmental ARG. Environment International. 2019; 125: 90-96.
  9. Wang Y, Jin Y, Chen W, Wang J, Chen H, Sun L, Li X, Ji J, Yu Q, Shen L, Wang B. Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chemical Engineering Journal. 2019. 358: 74-90.
  10. Huang W, Zhang Q, Li W, Yuan M, Zhou J, Hua L, Chen Y, Ye C, Ma Y. Development of novel nanoantibiotics using an outer membrane vesicle-based drug efflux mechanism. J Control Release. 2020 Jan 10;317:1-22. doi: 10.1016/j.jconrel.2019.11.017. Epub 2019 Nov 15. PMID: 31738965.
  11. Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, Goossens H, Laxminarayan R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3463-E3470. doi: 10.1073/pnas.1717295115. Epub 2018 Mar 26. PMID: 29581252; PMCID: PMC5899442.
  12. Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol. 2018 Nov 30;9:2928. doi: 10.3389/fmicb.2018.02928. PMID: 30555448; PMCID: PMC6283892.
  13. Hemeg HA. Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine. 2017 Nov 10;12:8211-8225. doi: 10.2147/IJN.S132163. PMID: 29184409; PMCID: PMC5689025.
  14. Lima R, Del Fiol FS, Balcão VM. Prospects for the Use of New Technologies to Combat Multidrug-Resistant Bacteria. Front Pharmacol. 2019 Jun 21;10:692. doi: 10.3389/fphar.2019.00692. PMID: 31293420; PMCID: PMC6598392.
  15. Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR. Nano-Strategies to Fight Multidrug Resistant Bacteria-"A Battle of the Titans". Front Microbiol. 2018 Jul 2;9:1441. doi: 10.3389/fmicb.2018.01441. PMID: 30013539; PMCID: PMC6036605.
  16. Kelly AS, Rodgers MA, O’Brien CS, Donnelly FR, Gilmore FB. Antibiotic delivery strategies to reduce antimicrobial resistance. Trends in Biotechnology. 2019; 1-17.
  17. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018 Sep 19;16(1):71. doi: 10.1186/s12951-018-0392-8. PMID: 30231877; PMCID: PMC6145203.
  18. Pazda M, Kumirska J, Stepnowski P, Mulkiewicz E. Antibiotic resistance genes identified in wastewater treatment plant systems - A review. Sci Total Environ. 2019 Dec 20;697:134023. doi: 10.1016/j.scitotenv.2019.134023. Epub 2019 Aug 22. PMID: 31479900.
  19. Zhang Y, Yuan Y, Chen W, Fan J, Lv H, Wu Q. Integrated nanotechnology of synergism-sterilization and removing-residues for neomycin through nano-Cu2 Colloids Surf B Biointerfaces. 2019 Nov 1;183:110371. doi: 10.1016/j.colsurfb.2019.110371. Epub 2019 Jul 30. PMID: 31408783.
  20. Guo M, Ye J, Gao D, Xu N, Yang J. Agrobacterium-mediated horizontal gene transfer: Mechanism, biotechnological application, potential risk and forestalling strategy. Biotechnol Adv. 2019 Jan-Feb;37(1):259-270. doi: 10.1016/j.biotechadv.2018.12.008. Epub 2018 Dec 21. PMID: 30579929.
  21. Almakki A, Jumas-Bilak E, Marchandin H, Licznar-Fajardo P. Antibiotic resistance in urban runoff. Sci Total Environ. 2019 Jun 1;667:64-76. doi: 10.1016/j.scitotenv.2019.02.183. Epub 2019 Feb 13. PMID: 30826682.
  22. Molechan C, Amoako DG, Abia ALK, Somboro AM, Bester LA, Essack SY. Molecular epidemiology of antibiotic-resistant Enterococcus spp. from the farm-to-fork continuum in intensive poultry production in KwaZulu-Natal, South Africa. Sci Total Environ. 2019 Nov 20;692:868-878. doi: 10.1016/j.scitotenv.2019.07.324. Epub 2019 Jul 21. PMID: 31539992.
  23. Ogawara H. Penicillin-binding proteins in Actinobacteria. J Antibiot (Tokyo). 2015 Apr;68(4):223-45. doi: 10.1038/ja.2014.148. Epub 2014 Oct 29. PMID: 25351947.
  24. Verni M, Minisci A, Convertino S, Nionelli L, Rizzello CG. Wasted Bread as Substrate for the Cultivation of Starters for the Food Industry. Front Microbiol. 2020 Feb 28;11:293. doi: 10.3389/fmicb.2020.00293. PMID: 32184770; PMCID: PMC7058793.
  25. Cao Y, Naseri M, He Y, Xu C, Walsh LJ, Ziora ZM. Non-antibiotic antimicrobial agents to combat biofilm-forming bacteria. J Glob Antimicrob Resist. 2020 Jun;21:445-451. doi: 10.1016/j.jgar.2019.11.012. Epub 2019 Dec 10. PMID: 31830536.
  26. Reen FJ, Gutiérrez-Barranquero JA, Parages ML, O Gara F. Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. Appl Microbiol Biotechnol. 2018 Mar;102(5):2063-2073. doi: 10.1007/s00253-018-8787-x. Epub 2018 Feb 1. PMID: 29392389; PMCID: PMC5814477.
  27. Khan F, Pham DTN, Oloketuyi SF, Manivasagan P, Oh J, Kim YM. Chitosan and their derivatives: Anti-biofilm drugs against pathogenic bacteria. Colloids and Surfaces B: Biointerfaces. 2020; 136: 103673.
  28. Karami P, Khaledi A, Mashoof RY, Yaghoobi MH, Karami M, Dastan D, Alikhani MY. The correlation between biofilm formation capability and antibiotic resistance pattern in Pseudomonas aeruginosa. Gene Reports. 2020; 18: 100561.
  29. Saxena V, Pandey LM. Bimetallic assembly of Fe(III) doped ZnO as an effective nanoantibiotic and its ROS independent antibacterial mechanism. J Trace Elem Med Biol. 2020 Jan;57:126416. doi: 10.1016/j.jtemb.2019.126416. Epub 2019 Oct 11. PMID: 31629630.
  30. Agarwal H, Menon S, Kumar SV, Rajeshkumar S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-Biological Interactions. 2018; 286: 60-70.
  31. Jelinkova P, Mazumdara A, Sura VP, Kociova S, Dolezelikova K, Jimenez AMJ, Koudelkova Z, Mishra PK, Smerkova K, Heger K, Vaculovicova K, Moulicka M, Adama V. Nanoparticle-drug conjugates treating bacterial infections. Review article. Journal of Controlled Release. 2019; 307: 166-1
  32. Mahamuni-Badiger PP, Patil PM, Badiger MV, Patel PR, Thorat-Gadgil BS, Pandit A, Bohara RA. Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles. Mater Sci Eng C Mater Biol Appl. 2020 Mar;108:110319. doi: 10.1016/j.msec.2019.110319. Epub 2019 Oct 23. PMID: 31923962.
  33. Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog. 2018 Oct;123:505-526. doi: 10.1016/j.micpath.2018.08.008. Epub 2018 Aug 7. PMID: 30092260.
  34. Anuj SA, Gajera HP, Hirpara DG, Golakiya BA. Bactericidal assessment of nano-silver on emerging and re-emerging human pathogens. J Trace Elem Med Biol. 2019 Jan;51:219-225. doi: 10.1016/j.jtemb.2018.04.028. Epub 2018 Apr 24. PMID: 29735327; PMCID: PMC7126441.
  35. Shaikh S, Nazam N, Rizvi SMD, Ahmad K, Baig MH, Lee EJ, Choi I. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. Int J Mol Sci. 2019 May 18;20(10):2468. doi: 10.3390/ijms20102468. PMID: 31109079; PMCID: PMC6566786.
  36. Cheng G, Dai M, Ahmed S, Hao H, Wang X, Yuan Z. Antimicrobial Drugs in Fighting against Antimicrobial Resistance. Front Microbiol. 2016 Apr 8;7:470. doi: 10.3389/fmicb.2016.00470. PMID: 27092125; PMCID: PMC4824775.
  37. Peters RJ, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P. Nanomaterials for products and application in agriculture, feed and food. Trends in Food Science and Technology. 2016; 54: 155-1
  38. Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front Microbiol. 2016 Nov 16;7:1831. doi: 10.3389/fmicb.2016.01831. PMID: 27899918; PMCID: PMC5110546.
  39. Su Y, Zheng X, Chen Y, Li M, Liu K. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Sci Rep. 2015 Oct 28;5:15824. doi: 10.1038/srep15824. PMID: 26508362; PMCID: PMC4623765.
  40. Kruk T, Szczepanowicz K, Stefańska J, Socha RP, Warszyński P. Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids Surf B Biointerfaces. 2015 Apr 1;128:17-22. doi: 10.1016/j.colsurfb.2015.02.009. Epub 2015 Feb 14. PMID: 25723345.
  41. Sarwar S, Chakraborti S, Bera S, Sheikh IA, Hoque KM, Chakrabarti P. The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: Variation in response depends on biotype. Nanomedicine. 2016 Aug;12(6):1499-509. doi: 10.1016/j.nano.2016.02.006. Epub 2016 Mar 10. PMID: 26970029.
  42. Baranwal A, Srivastava A, Kumar P, Bajpai VK, Maurya PK, Chandra P. Prospects of Nanostructure Materials and Their Composites as Antimicrobial Agents. Front Microbiol. 2018 Mar 9;9:422. doi: 10.3389/fmicb.2018.00422. PMID: 29593676; PMCID: PMC5855923.
  43. Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 2012 Mar;33(7):2327-33. doi: 10.1016/j.biomaterials.2011.11.057. Epub 2011 Dec 17. PMID: 22182745.
  44. Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S. Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen. Nanomaterials (Basel). 2016 Apr 14;6(4):71. doi: 10.3390/nano6040071. PMID: 28335198; PMCID: PMC5302575.
  45. Taylor EN, Kummer KM, Durmus NG, Leuba K, Tarquinio KM, Webster TJ. Superparamagnetic iron oxide nanoparticles (SPION) for the treatment of antibiotic-resistant biofilms. Small. 2012 Oct 8;8(19):3016-27. doi: 10.1002/smll.201200575. Epub 2012 Jul 6. PMID: 22777831.
  46. Esmaeillou M, Zarrini G, Ahangarzadeh Rezaee M, Shahbazi Mojarrad J, Bahadori A. Vancomycin Capped with Silver Nanoparticles as an Antibacterial Agent against Multi-Drug Resistance Bacteria. Adv Pharm Bull. 2017 Sep;7(3):479-483. doi: 10.15171/apb.2017.058. Epub 2017 Sep 25. PMID: 29071232; PMCID: PMC5651071.
  47. Otari SV, Patil RM, Waghmare SR, Ghosh SJ, Pawar SH. A novel microbial synthesis of catalytically active Ag-alginate biohydrogel and its antimicrobial activity. Dalton Trans. 2013 Jul 21;42(27):9966-75. doi: 10.1039/c3dt51093j. Epub 2013 May 23. PMID: 23698554.
  48. Thapa R, Bhagat C, Shrestha P, Awal S, Dudhagara P. Enzyme-mediated formulation of stable elliptical silver nanoparticles tested against clinical pathogens and MDR bacteria and development of antimicrobial surgical thread. Ann Clin Microbiol Antimicrob. 2017 May 16;16(1):39. doi: 10.1186/s12941-017-0216-y. PMID: 28511708; PMCID: PMC5434635.
  49. Shaikh S, Rizvi SMD, Shakil S, Hussain T, Alshammari TM, Ahmad W, Tabrez S, Al-Qahtani MH, Abuzenadah AM. Synthesis and Characterization of Cefotaxime Conjugated Gold Nanoparticles and Their Use to Target Drug-Resistant CTX-M-Producing Bacterial Pathogens. J Cell Biochem. 2017 Sep;118(9):2802-2808. doi: 10.1002/jcb.25929. Epub 2017 Apr 27. PMID: 28181300.
  50. Payne JN, Waghwani HK, Connor MG, Hamilton W, Tockstein S, Moolani H, Chavda F, Badwaik V, Lawrenz MB, Dakshinamurthy R. Novel Synthesis of Kanamycin Conjugated Gold Nanoparticles with Potent Antibacterial Activity. Front Microbiol. 2016 May 2;7:607. doi: 10.3389/fmicb.2016.00607. PMID: 27330535; PMCID: PMC4908860.
  51. Roy A, Parveen AR, Koppalkar A, Prasad MVNA. Effect of nano - titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. Journal of Biomaterials and Nanobiotechnology. 2010; 1: 37-41.
  52. Hua S, de Matos MBC, Metselaar JM, Storm G. Current Trends and Challenges in the Clinical Translation of Nanoparticulate Nanomedicines: Pathways for Translational Development and Commercialization. Front Pharmacol. 2018 Jul 17;9:790. doi: 10.3389/fphar.2018.00790. PMID: 30065653; PMCID: PMC6056679.
  53. Gao W, Chen Y, Zhang Y, Zhang Q, Zhang L. Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev. 2018 Mar 1;127:46-57. doi: 10.1016/j.addr.2017.09.015. Epub 2017 Sep 20. PMID: 28939377; PMCID: PMC5860926.
  54. Wang DY, van der Mei HC, Ren Y, Busscher HJ, Shi L. Lipid-Based Antimicrobial Delivery-Systems for the Treatment of Bacterial Infections. Front Chem. 2020 Jan 10;7:872. doi: 10.3389/fchem.2019.00872. PMID: 31998680; PMCID: PMC6965326.
  55. Arjunan N, Kumari HL, Singaravelu CM, Kandasamy R, Kandasamy J. Physicochemical investigations of biogenic chitosan-silver nanocomposite as antimicrobial and anticancer agent. Int J Biol Macromol. 2016 Nov;92:77-87. doi: 10.1016/j.ijbiomac.2016.07.003. Epub 2016 Jul 2. PMID: 27381584.
  56. El-Nahrawy AM, Ali AI, Abou Hammad AB, Youssef AM. Influences of Ag-NPs doping chitosan/calcium silicate nanocomposites for optical and antibacterial activity. Int J Biol Macromol. 2016 Dec;93(Pt A):267-275. doi: 10.1016/j.ijbiomac.2016.08.045. Epub 2016 Aug 16. PMID: 27543348.

Figures:

Figure 1

Figure 1

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More