A Gateway to Metal Resistance: Bacterial Response to Heavy Metal Toxicity in the Biological Environment

Main Article Content

Loai Aljerf
Nuha AlMasri

Abstract

Heavy metals and metalloids are dangerous because they have the tendency to bioaccumulate in biological organisms over a period of time. However, it is conceived that a number of phytochemical agents as well microorganism can act as heavy metal removing agent both from human beings and the environment surrounding. For instance, microbes are used for the removal of heavy metals from the water bodies including bacteria, fungi, algae and yeast. This review shows that bacteria can play an important role in understanding the uptake and potential removal behaviour of heavy metal ions. The bacteria are chosen based on their resistance to heavy metals (incl. their toxicities) and capacity of adsorbing them. Due to specific resistance transfer factors, cell impermeability is drastically inhibited by several ion (i.e. mercury, cadmium, cobalt, copper, arsenic) forms. Between these elements, free-ion cadmium and copper concentrations in the biological medium provide more accurate determination of metal concentrations that affect the bacteria, than with most of the other existing media. Metal toxicity is usually assessed by using appropriate metal ion chelators and adjusting pH factor. Bacteria and metals in the ecosystem can form synergistic or antagonistic relationships, supplying each other with nutrients or energy sources, or producing toxins to reduce growth and competition for limiting nutritional elements. Thus, this relation may present a more sustainable approach for the restoration of contaminated sources.

Article Details

Aljerf, L., & AlMasri, N. (2018). A Gateway to Metal Resistance: Bacterial Response to Heavy Metal Toxicity in the Biological Environment. Annals of Advances in Chemistry, 2(1), 032–044. https://doi.org/10.29328/journal.aac.1001012
Review Articles

Copyright (c) 2018 Aljerf L, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jung H. Nutrients and heavy metals contamination in an urban estuary of northern New Jersey. Geosciences. 2017; 7: 108. Ref.: https://tinyurl.com/ycnj3936

Aljerf L, Choukaife AE. Review: Assessment of the doable utilisation of dendrochronology as an element tracer technology in soils artificially contaminated with heavy metals. Biodiversity International Journal. 2018; 2: 1-8. Ref.: https://tinyurl.com/yc3hkbnl

Mustafa G, Komatsu S. Toxicity of heavy metals and metal-containing nanoparticles on plants. Biochim Biophys Acta. 2016; 1864: 932-944. Ref.: https://tinyurl.com/y8zo7dbq

Aljerf L, Al Masri N. Mercury toxicity: ecological features of organic phase of mercury in biota-Part I. Archives of Organic and Inorganic Chemical Sciences. 2018; 3: 1-8. Ref.: https://tinyurl.com/yazn237c

Jadoon S, Malik A. DNA damage by heavy metals in animals and human beings: an overview. Biochem Pharmacol. 2017; 6: 1-8. Ref.: https://tinyurl.com/yartpqd9

Warburg O. Heavy metal prosthetic groups and enzyme action. Soil Sci. 1950; 70: 166. Ref.: https://tinyurl.com/ybqu4znr

Lalotra P. Bioaccumulation of heavy metals in the sporocarps of some wild mushrooms. Curr Res Environ Appl Mycol J Fungal Biol. 2016; 6: 159-165. Ref.: https://tinyurl.com/y7733ojc

Aljerf L. Advanced highly polluted rainwater treatment process. Journal of Urban and Environmental Engineering. 2018.

Stasinos S, Nasopoulou C, Tsikrika C, Zabetakis I. The bioaccumulation and physiological effects of heavy metals in carrots, onions, and potatoes and dietary implications for Cr and Ni: A review. J Food Sci. 2014; 79: 765-780. Ref.: https://tinyurl.com/ya4cegqp

Shah SA. Trace minerals and heavy metals: implications in prostate cancer. Bangl J Med Biochem. 2017; 8: 27. Ref.: https://tinyurl.com/ybtxln4j

Bjørklund G, Mutter J, Aaseth J. Metal chelators and neurotoxicity: lead, mercury, and arsenic. Arch Toxicol. 2017; 91: 3787-3797. Ref.: https://tinyurl.com/y9dlr5u2

Feingold A. The elimination of volatile substances from the lungs. Int Anesthesiol Clin. 1977; 15: 153-168. Ref.: https://tinyurl.com/ydhge79v

Sato Y. The pathological findings of placenta with neonatal placenta. Placenta. 2017; 59: 169. Ref.: https://tinyurl.com/yc7oneo3

De J, Ramaiah N, Vardanyan L. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol. 2008; 10: 471-477. Ref.: https://tinyurl.com/y77bkov7

Robinson T. Removal of toxic metals during biological treatment of landfill leachates. Waste Manage. 2017; 63: 299-309. Ref.: https://tinyurl.com/ybcsnoy8

Aljerf L. High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: kinetics and equilibrium study. Journal of Environmental Management. 2018. Ref.: https://tinyurl.com/y7zos28k

Soltani N, Shaheli M. Cow milk contamination with heavy metals (mercury and lead) and the possibility of heavy metals disintegration by the human intestinal bacteria. J Med Microbiol Diag. 2017; 6: 267. Ref.: https://tinyurl.com/yazt4xew

Mathew R, College SM, Krishnaswamy VG. Remediation of mixed heavy metals using acido-tolerant bacterial co-cultures. Int J Agric Environ Sci. 2017; 4: 43-52. Ref.: https://tinyurl.com/ybjyax2w

Waturangi DE, Rahayu BS, Lalu KY, Mulyono N. Characterization of bioactive compound from actinomycetes for antibiofilm activity against Gram-negative and Gram-positive bacteria. Malays J Microbiol. 2016; 12: 291-299. Ref.: https://tinyurl.com/y954g78q

Puyen ZM, Villagrasa E, Maldonado J, Diestra E, Esteve I, et al. Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008. Bioresour Technol. 2012; 126: 233-237. Ref.: https://tinyurl.com/ycsqrvno

Barrow W, Himmel M, Squire PG, Tornabene TG. Evidence for alteration of the membrane-bound ribosomes in Micrococcus luteus cells exposed to lead. Chem Biol Interact. 1978; 23: 387-397. Ref.: https://tinyurl.com/y9vj62hn

Bishop R. Bacterial lipids. Biochim Biophys Acta. 2016; 1862: 1285-1286. Ref.: https://tinyurl.com/ydhs6r97

Gautam S, Sood NK, Gupta K. Aberrant cytoplasmic accumulation of retinoblastoma protein in basal cells may lead to increased survival in malignant canine mammary tumours. Vet Med. 2018; 59: 76-80. Ref.: https://tinyurl.com/ybgurms5

Owen P, Salton MRJ. Isolation and characterization of a mannan from mesosomal membrane vesicles of Micrococcus lysodeikticus. Biochim Biophys Acta 1975; 406: 214-234. Ref.: https://tinyurl.com/yb3aucpg

Saxena G, Flora SJS. Lead-induced oxidative stress and hematological alterations and their response to combined administration of calcium disodium EDTA with a thiol chelator in rats. J Biochem Mol Toxicol. 2004; 18: 221-233. Ref.: https://tinyurl.com/ydx8su6m

Nielsen AM, Sojka GA. Photoheterotrophic utilization of acetate by the wild type and an acetate-adapted mutant of Rhodopseudomonas capsulata. Arch Microbiol. 1979; 120: 39-42. Ref.: https://tinyurl.com/yd2d5j4j

Jaiganesh T, Rani JDV, Girigoswami A. Spectroscopically characterized cadmium sulfide quantum dots lengthening the lag phase of Escherichia coli growth. Spectrochim Acta A. 2012; 92: 29-32. Ref.: https://tinyurl.com/y7xsknvu

Parran DK. Effects of methylmercury and mercuric Chloride on differentiation and cell viability in PC12 cells. Toxicol Sci. 2001; 59: 278-290. Ref.: https://tinyurl.com/y82hp9a4

Kato F, Tanaka M, Nakamura K. Rapid fluorometric assay for cell viability and cell growth using nucleic acid staining and cell lysis agents. Toxicol In Vitro. 1999; 13: 923-929. Ref.: https://tinyurl.com/ycdm4erf

Mokkapati SK, de Henestrosa ARF, Bhagwat AS. Escherichia coli DNA glycosylase Mug: a growth-regulated enzyme required for mutation avoidance in stationary-phase cells. Mol Microbiol. 2008; 41: 1101-1111. Ref.: https://tinyurl.com/yaadvf7l

Cheng TC. In vivo effects of heavy metals on cellular defense mechanisms of Crassostrea virginica: Total and differential cell counts. J Invertebr Pathol. 1988; 51: 207-214. Ref.: https://tinyurl.com/y8cm89mq

Singleton FL, Guthrie RK. Aquatic bacterial populations and heavy metals-I. Composition of aquatic bacteria in the presence of copper and mercury salts. Water Res. 1977; 11: 639-642. Ref.: https://tinyurl.com/y7k45ttd

Bradberry SM. Metals (cobalt, copper, lead, mercury). Medicine. 2016; 44: 182-184. Ref.: https://tinyurl.com/ybfj8flz

Albright LJ, Wilson EM. Sub-lethal effects of several metallic salts-organic compounds combinations upon the heterotrophic microflora of a natural water. Water Res. 1974; 8: 101-105. Ref.: https://tinyurl.com/y94cbuds

Anderson DM, Lively JS, Vaccaro RF. Copper complexation during spring phytoplankton blooms in coastal waters. Mar Res. 1984; 42: 677-695. Ref.: https://tinyurl.com/y7lmq5wq

Couillard D, Chartier M, Mercier G. Bacterial leaching of heavy metals from aerobic sludge. Bioresour Technol. 1991; 36: 293-302. Ref.: https://tinyurl.com/y8a9tcfo

Kobayashi N, Okamura H. Effects of heavy metals on sea urchin embryo development-Part 2 Interactive toxic effects of heavy metals in synthetic mine effluents. Chemosphere. 2005; 61: 1198-1203. Ref.: https://tinyurl.com/y92xphnv

Ipeaiyeda AR, Onianwa PC. Sediment quality assessment and dispersion pattern of toxic metals from brewery effluent discharged into the Olosun river, Nigeria. Environ Earth Sci. 2016; 75: 325. Ref.: https://tinyurl.com/yb9ty5kw

Aquino SF, Stuckey DC. Bioavailability and toxicity of metal nutrients during anaerobic digestion. Environ Eng. 2007; 133: 28-35. Ref.: https://tinyurl.com/ydbtwz6u

Shi Y, Qi X, Gao Q. Removal of heavy metals by bacteria in bio-ceramsite and their toxicity to bacteria. Asian J Chem. 2015; 27: 2463-2467. Ref.: https://tinyurl.com/y7opseds

Mendiguchía C, Moreno C, García-Vargas M. Separation of heavy metals in seawater by liquid membranes: preconcentration of copper. Sep Sci Technol. 2002; 37: 2337-2351. Ref.: https://tinyurl.com/y95hpbgo

Ornaghi F, Ferrini S, Prati M, Giavini E. The protective effects of N-acetyl-L-cysteine against methyl mercury embryo toxicity in Mice. Toxicol Sci. 1993; 20: 437-445. Ref.: https://tinyurl.com/y9f8fryx

Sato C, Leung SW, Schnoor JL. Toxic response of Nitrosomonas europaea to copper in inorganic medium and wastewater. Water Res. 1988; 22: 1117-1127. Ref.: https://tinyurl.com/y8mrco68

McIver CJ, Tapsall JW. Cysteine requirements of naturally occurring cysteine auxotrophs of Escherichia coli. Pathology. 1987; 19: 361-363. Ref.: https://tinyurl.com/y8ryl9oh

Sprague JB. Promising anti-pollutant: chelating agent NTA protects fish from copper and zinc. Nature. 1968; 220: 1345-1346. Ref.: https://tinyurl.com/yc998qxb

Shaikh ZA, Blazka ME, Endo T. Metal transport in cells: cadmium uptake by rat hepatocytes and renal cortical epithelial cells. Environ Health Perspect. 1995; 103: 73-75. Ref.: https://tinyurl.com/y8o5fwqt

Puls RW, Bohn HL. Sorption of cadmium, nickel, and zinc by kaolinite and montmorillonite suspensions1. Soil Sci Soc Am J. 1988; 52: 1289. Ref.: https://tinyurl.com/y9lqz7py

Hall PL. Adsorption of water by homoionic exchange forms of Wyoming montmorillonite (SWy-1). Clays Clay Miner. 1989; 37: 355-363. Ref.: https://tinyurl.com/ycfxn6wj

Leitao JH, Sa-Correia I. Effects of growth-inhibitory concentrations of copper on alginate biosynthesis in highly mucoid Pseudomonas aeruginosa. Microbiology. 1997; 143: 481-488. Ref.: https://tinyurl.com/ybhup42z

Masuda G, Tomioka S, Uchida H, Hasegawa M. Bacteriostatic and bactericidal activities of selected Beta-Lactam antibiotics studied on agar plates. Antimicrob Agents Chemother. 1977; 11: 376-382. Ref.: https://tinyurl.com/yb6uqfvk

Panda J, Sarkar P. Bioremediation of chromium by novel strains Enterobacter aerogenes T2 and Acinetobacter sp PD 12 S2. Environ Sci Pollut Res. 2011; 19: 1809-1817. Ref.: https://tinyurl.com/y996ak4h

Sundar K, Sadiq M, Mukherjee A, Chandrasekaran N. Bioremoval of trivalent chromium using Bacillus biofilms through continuous flow reactor. Hazard Mater. 2011; 196: 44-51. Ref.: https://tinyurl.com/y7nu5yub

Bhaskar RK. Pollutants induced cancer in experimental animals. Int J Sci Res. 2016; 5: 2221-2225. Ref.: https://tinyurl.com/ya7no6lg

Cenci C, Morozzi G. Evaluation of the toxic effect of Cd2+ and Cd(CN)42− ions on the growth of mixed microbial population of activated sludges. Sci Total Environ. 1977; 7: 131-143. Ref.: https://tinyurl.com/y8xztqyp

Ji G, Silver S. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci. 1992; 89: 9474-9478. Ref.: https://tinyurl.com/y73cdwkk

Babai R. An Escherichia coli gene responsive to heavy metals. FEMS Microbiol Lett. 1998; 167: 107-111. Ref.: https://tinyurl.com/y7wgac4q

Tempest DW, Hunter JR, Sykes J. Magnesium-limited growth of Aerobacter aerogenes in a chemostat. J Gen Microbiol. 1965; 39: 355-366. Ref.: https://tinyurl.com/y9ee43vx

Tsai KP. Management of target algae by using copper-based algaecides: effects of algal cell density and sensitivity to copper. Water Air Soil Pollut. 2016; 227: 238. Ref.: https://tinyurl.com/yaz5pwf2

Al-Masoudi WA, Faaz RA, Al-Asadi RH, Jabbar HS. Synthesis, antimicrobial activity and modelling studies of some new metal complexes of Schiff base derived from sulphonamide drug in vitro. Eur J Chem. 2016; 7: 102-106. Ref.: https://tinyurl.com/y7yewfx6

Smit H, van der Goot H, Nauta WT, Timmerman H, de Bolster MW, et al. Mode of action of the copper(I) complex of 2,9-dimethyl-1,10-phenanthroline on Mycoplasma gallisepticum. Antimicrob Agents Chemother. 1981; 20: 455-462. Ref.: https://tinyurl.com/ycszynn2

Harris CM, Patil HRH, Sinn E. Nitrogenous chelate complexes of transition metals. IV Pseudo-tetrahedral copper (II) complexes containing 2,2'-biquinolyl. Inorg Chem. 1967; 6: 1102-1105. Ref.: https://tinyurl.com/y7jvruh8

Milacic V, Jiao P, Zhang B, Dou QP. Novel 8-hydroxylquinoline analogs induce copper-dependent proteasome inhibition and cell death in human breast cancer cells. Int J Oncol. 2009; 35: 1481-1491. Ref.: https://tinyurl.com/yd4nt7wv

Naka K, Ando D, Chujo Y. Effect of substituent groups for formation of organic-metal hybrid nanowires by charge-transfer of tetrathiafulvalene derivatives with metal ion. Synth Met. 2009; 159: 931-934. Ref.: https://tinyurl.com/yah5oera

Dipu S, Kumar AA, Thanga SG. Effect of chelating agents in phytoremediation of heavy metals. Remed J. 2012; 22: 133-146. Ref.: https://tinyurl.com/y76gajop

Madoni P, Esteban G, Gorbi G. Acute toxicity of cadmium, copper, mercury, and zinc to ciliates from activated sludge plants. Bull Environ Contam Toxicol. 1992; 49: 900-905. Ref.: https://tinyurl.com/yd9fkowq

Morgan-Sagastume F, Nielsen JL, Nielsen PH. Substrate-dependent denitrification of abundant probe-defined denitrifying bacteria in activated sludge. FEMS Microbiol Ecol. 2008; 66: 447-461. Ref.: https://tinyurl.com/yau2yrhk

Gu Z, Aikebaier Y, Arefieva V, Mazirov M. Using microbiological leaching method to remove heavy metals from sludge. Eurasian J Soil Sci. 2017; 6: 51-51. Ref.: https://tinyurl.com/y8ptc6j8

Abdulaziz A, Jasmin C, Sheeba VA, Gireeshkumar TR, Shanta N. Heavy metals pollution influence the community structure of Cyanobacteria in nutrient rich tropical estuary. Oceanogr. 2017; 3: 137. Ref.: https://tinyurl.com/yajlpdg3

Chen J, Weimer PJ. Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria. Microbiol. 2001; 147: 21-30. Ref.: https://tinyurl.com/ycqrydhb

Vardy DW, Doering JA, Santore R, Ryan D, Giesy JP, et al. Assessment of Columbia river sediment toxicity to White Sturgeon: concentrations of metals in sediment, pore water and overlying water. J Environ Anal Toxicol. 2014; 5: 263. Ref.: https://tinyurl.com/ybnde9x5

Meger SA. Polluted precipitation and the geochronology of mercury deposition in lake sediment of northern Minnesota. Water Air Soil Pollut. 1986; 30: 411-419. Ref.: https://tinyurl.com/yab68f4l

Sarkar T, Hussain A. Photocytotoxicity of curcumin and its iron complex. Enzyme Eng. 2016; 5: 143. Ref.: https://tinyurl.com/ya3nzon6

Ottow JCG. Evaluation of iron-reducing bacteria in soil and the physiological mechanism of iron-reduction in Aerobacter aerogenes. Z Allg Mikrobiol. 2007; 8: 441-443. Ref.: https://tinyurl.com/y8l8hxot

Grass G. Iron Transport in Escherichia Coli: All has not been said and Done. Biometals. 2006; 19: 159-172. Ref.: https://tinyurl.com/y978dbfc

Atieh MA, Ji Y, Kochkodan V. Metals in the environment: toxic metals removal. Bioinorg Chem Appl. 2017; 2017: 1-2. Ref.: https://tinyurl.com/ycx8ftlm

Pongratz R, Heumann KG. Production of methylated mercury, lead, and cadmium by marine bacteria as a significant natural source for atmospheric heavy metals in polar regions. Chemosphere. 1999; 39: 89-102. Ref.: https://tinyurl.com/y7kpgjrp

Maher WA. Determination of inorganic and methylated arsenic species in marine organisms and sediments. Anal Chim Acta. 1981; 126: 157-165. Ref.: https://tinyurl.com/y98qtw6t

Farmer JG. Lead concentration profiles in lead-210 dated Lake Ontario sediment cores. Sci Total Environ. 1978; 10: 117-127. Ref.: https://tinyurl.com/yct52zds

Kobza J. Soil and plant pollution by potentially toxic elements in Slovakia. Plant Soil Environ. 2018; 51: 243-248. Ref.: https://tinyurl.com/yb7lqkly

Clarkson TW, Stockinger H. Recent advances in the toxicology of mercury with emphasis on the alkylmercurials. Crit Rev Toxicol. 1972; 1: 203-234. Ref.: https://tinyurl.com/ya4mbb6b

Lambertsson L, Nilsson M. Organic material: the primary control on mercury methylation and ambient methyl mercury concentrations in estuarine sediments. Environ Sci Technol. 2006; 40: 1822-1829. Ref.: https://tinyurl.com/ybus2bxp

Baralkiewicz D, Gramowska H, Gołdyn R. Distribution of total mercury and methyl mercury in water, sediment and fish from Swarze dzkie lake. Chem Ecol. 2006; 22: 59-64. Ref.: https://tinyurl.com/y8xhp5rp

Wright DR, Hamilton RD. Release of methyl mercury from sediments: effects of mercury concentration, low temperature, and nutrient addition. Can J Fish Aquat Sci. 1982; 39: 1459-1466. Ref.: https://tinyurl.com/yd9ugadg

Oswald CJ, Carey SK. Total and methyl mercury concentrations in sediment and water of a constructed wetland in the Athabasca Oil Sands Region. Environ Pollut. 2016; 213: 628-637. Ref.: https://tinyurl.com/ycfsq9wh

Furukawa K, Tonomura K. Induction of metallic mercury-releasing enzyme in mercury-resistant pseudomonas. Agric Biol Chem. 1972; 36: 2441-2448. Ref.: https://tinyurl.com/y8puseek

Furukawa K, Tonomura K. Enzyme system involved in the decomposition of phenyl mercuric acetate by mercury-resistant pseudomonas. Agric Biol Chem. 1971; 35: 604-610. Ref.: https://tinyurl.com/y7z2uaau

Matsumura F, Gotoh Y, Boush GM. Phenylmercuric acetate: metabolic conversion by microorganisms. Science. 1971; 173: 49-51. Ref.: https://tinyurl.com/yamjhjkw

Graham AM, Bullock AL, Maizel AC, Elias DA, Gilmour CC. Detailed assessment of the kinetics of Hg-cell association, Hg methylation, and methylmercury degradation in several Desulfovibrio species. Appl Environ Microbiol. 2012; 78: 7337-7346. Ref.: https://tinyurl.com/y9f52eeg

Alekhin YV, Zagrtdenov NR, Mukhamadiyarova RV. Hg0(liq)-Hg0(solution) equilibrium and solubility of elementary mercury in water. Moscow Univ Geol Bull. 2011; 66: 439-441. Ref.: https://tinyurl.com/y8725ndh

Krul J. Some factors affecting floc formation by Zoogloea ramigera, strain I-16-M. Water Res. 1977; 11: 51-56. Ref.: https://tinyurl.com/yctttc7l

Bitton G, Freihofer V. Influence of extracellular polysaccharides on the toxicity of copper and cadmium toward Klebsiella aerogenes. Microb Ecol. 1977; 4: 119-125. Ref.: https://tinyurl.com/ycts6oog

Brandt KK, Petersen A, Holm PE, Nybroe O. Decreased abundance and diversity of culturable Pseudomonas spp. populations with increasing copper exposure in the sugar beet rhizosphere. FEMS Microb Ecol. 2006; 56: 281-291. Ref.: https://tinyurl.com/ydx6oxn9

Tornabene TG, Edwards HW. Microbial uptake of lead. Science. 1972; 176: 1334-1335. Ref.: https://tinyurl.com/y9v7m2hj

Kim SJ. Research papers: Estimation of active nitrosomonas and nitrobacter concentrations in activated sludge using nitrogenous oxygen uptake rate. Environ Eng Res. 2004; 9: 130-142. Ref.: https://tinyurl.com/ycc43336

Yu R, Lai B, Vogt S, Chandran K. Elemental profiling of single bacterial cells as a function of copper exposure and growth phase. PLoS ONE. 2011; 6: e21255. Ref.: https://tinyurl.com/y856j8r2

TyagiRD.Microbialleachingof metals frommunicipal sludge: Effects of sludge solids concentration. Process Biochem. 1992; 27: 89-96. Ref.: https://tinyurl.com/ydf6lgkg

Komura I, Funaba T, Izaki K. Mechanism of mercuric chloride resistance in microorganisms: II. NADPH-dependent reduction of mercuric chloride and vaporization of mercury from mercuric chloride by a multiple drug resistant strain of Escherichia coli. J Biochem. 1971; 70: 895-901. Ref.: https://tinyurl.com/y92wdb8x

Rochelle PA, Fry JC, Day MJ. Factors affecting conjugal transfer of plasmids encoding mercury resistance from pure cultures and mixed natural suspensions of Epilithic Bacteria. Microbiol. 1989; 135: 409-424. Ref.: https://tinyurl.com/y9dgtbvu

Guha C, Mookerjee A. RNA synthesis and degradation during preferential inhibition of protein synthesis by cobalt chloride in Escherichia coli K-12. Mol Biol Rep. 1981; 7: 217-220. Ref.: https://tinyurl.com/y9g5sjge

Gotz F, Zabielski J, Philipson L, Lindberg M. DNA homology between the arsenate resistance plasmid pSX267 from Staphylococcus xylosus and the penicillinase plasmid pI258 from Staphylococcus aureus. Plasmid. 1983; 9: 126-137. Ref.: https://tinyurl.com/ybbt4uf7

Diels L, Sadouk A, Mergeay M. Large plasmids governing multiple resistances to heavy metals: A genetic approach. Toxicol Environ Chem.1989; 23: 79-89. Ref.: https://tinyurl.com/yaqcrmoz

Berger NA, Kociolek K, Pitha J. Steric factors in lymphocyte stimulation by organomercurials. Biochem Biophys Res Commun. 1979; 86: 1234-1240. Ref.: https://tinyurl.com/y76h4nuk

Schwager S, Lumjiaktase P, Stöckli M, Weisskopf L, Eberl L. The genetic basis of cadmium resistance of Burkholderia cenocepacia. Environ Microbiol Rep. 2012; 4: 562-568. Ref.: https://tinyurl.com/yacvdrzs

Gillis P. Investigating a potential mechanism of Cd resistance in Chironomus riparius larvae using kinetic analysis of calcium and cadmium uptake. Aquat. Toxicol. 2008; 89: 180-187. Ref.: https://tinyurl.com/y8xwjr5g

Fujiwara K, Iwamoto M, Toda S, Fuwa K. Characteristics of Escherichia coli B resistant to cobaltous ion. Agric Biol Chem. 1977; 41: 313-322. Ref.: https://tinyurl.com/yanhrmjl

Grabow WOK, van Zyl M, Prozesky OW. Behaviour in conventional sewage purification processes of coliform bacteria with transferable or non-transferable drug-resistance. Water Res. 1976; 10: 717-723. Ref.: https://tinyurl.com/y7anmj4m

Varma MM, Thomas WA, Prasad C. Resistance to inorganic salts and antibiotics among sewage-borne enterobacteriaceae and achromobacteriaceae. J Appl Bacteriol. 1976; 41: 347-349. Ref.: https://tinyurl.com/y8hvo6f6

Sinegani AAS, Younessi N. Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses. J Glob Antimicrob Resist. 2017; 10: 247-255. Ref.: https://tinyurl.com/y8xsd7g3

Nakahara H, Ishikawa T, Sarai Y, Kondo I, Kozukue H, et al. Mercury resistance and R Plasmids in Escherichia coli isolated from clinical lesions in Japan. Antimicrob Agents Chemother. 1977; 11: 999-1003. Ref.: https://tinyurl.com/ycaok7w2

Baquero F. Low-level antibacterial resistance: a gateway to clinical resistance. Drug Resist Update. 2001; 4: 93-105. Ref.: https://tinyurl.com/ybg4xhwr

Yamina B, Tahar B, Laure FM. Isolation and screening of heavy metal resistant bacteria from wastewater: a study of heavy metal co-resistance and antibiotics resistance. Water Sci Technol. 2012; 66: 2041. Ref.: https://tinyurl.com/y86gs5ok

Wales A, Davies R. Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to food borne pathogens. Antibiotics. 2015; 4: 567-604. Ref.: https://tinyurl.com/ya7kogdh

Altug G, Balkis N. Levels of some toxic elements and frequency of bacterial heavy metal resistance in sediment and sea water. Environ Monit Assess. 2008; 149: 61-69. Ref.: https://tinyurl.com/y86tm8gz

Guo T, Baasner J. Technical Note: Using FIMS to determine mercury content in sewage sludge, sediment and soil samples. J Autom Chem. 1996; 18: 221-223. Ref.: https://tinyurl.com/yanwhpfh

Hart M. Diversity amongst Bacillus merA genes amplified from mercury resistant isolates and directly from mercury polluted soil. FEMS Microbiol Ecol. 1998; 27: 73-84. Ref.: https://tinyurl.com/ycu33hfr

Søgaard P. Resistance types in citrobacter freund II occurrence and resistance to ampicillin, carbenicillin, cephalothin and mecillinam. Transfer of ampicillin resistance. Acta Pathol Microbiol Scand B. 2009; 27: 79-83. Ref.: https://tinyurl.com/y7t5cfjk